

# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# DEVELOPMENT OF VEHICLE DOOR SECURITY USING SMART TAG AND FINGERPRINT SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Computer Engineering Technology (Computer System) with Honours.

By

# SARAVANAN A/L SAMINATHAN B071510574 940323-08-6161

# FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

## TECHNOLOGY

2018



# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

### Tajuk: DEVELOPMENT OF VEHICLE DOOR SECURITY USING SMART

### TAG AND FINGERPRINT SYSTEM

Sesi Pengajian: Semester 1 2018/2019

Saya **SARAVANAN A/L SAMINATHAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **\*\***Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT\* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

TERHAD\* Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

 $\boxtimes \begin{array}{c} \text{TIDAK} \\ \text{TERHAD} \end{array}$ 

ii

Yang benar,

Disahkan oleh penyelia:

SARAVANAN A/L SAMINATHAN Alamat Tetap: 6, Kampung Pasir Tambahan, Jalan Teluk Intan, 35500, Bidor Perak. DR JAMIL ABEDALRAHIM JAMIL ALSAYAYDEH

Tarikh:

Tarikh:

\*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

### DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF VEHICLE DOOR SECURITY USING SMART TAG AND FINGERPRINT SYSTEM is the results of my own research except as cited in references.

Signature:Author:SARAVANAN A/L SAMINATHANDate:

### APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Computer System) with Honours. The member of the supervisory is as follow:

> Signature: Supervisor : DR JAMIL ABEDALRAHIM JAMIL ALSAYAYDEH

v

### ABSTRAK

Projek ini yang bertajuk Pembangunan Keselamatan Pintu Kenderaan menggunakan Sistem Tag Pintar dan Cap jari. Arduino sebagai pengawal antara Sensor RFID, Sensor Sidik Jari, Buzzer, LCD, LED dan Relay. Projek ini dilaksanakan untuk tujuan keselamatan untuk melindungi keselamatan kenderaan dari pencurian kenderaan. Ia sangat berguna dan penting untuk memberi amaran kepada orang-orang yang mempunyai kenderaan untuk melindunginya dari kecurian. Ini adalah sistem yang sangat penting untuk dilaksanakan di pintu utama kenderaan. Projek ini mula berfungsi apabila akses pengguna sama ada dari satu cap jari sistem atau tag pintar untuk mengunci dan membuka kunci pintu. Sistem cap jari hanya pengguna yang boleh mengakses manakala sistem teg pintar boleh diakses oleh pengguna atau saudara pengguna apabila mereka meminjam kenderaan untuk kecemasan. Pintu kenderaan tidak boleh dibuka apabila cap jari atau tag pintar yang tidak betul adalah akses. Sebaik sahaja teg pintar yang tidak betul diakses oleh orang yang tinggi untuk memberi amaran kepada pengguna. Mikrokontroler Arduino Uno dikawal oleh keseluruhan sistem projek.

#### ABSTRACT

This project entitled Development of Vehicle Door Security using Smart Tag and Fingerprint System. The Arduino as a controller between RFID Sensor, Fingerprint Sensor, Buzzer, LCD, LED and Relay. This project implemented for security purpose to protect the safety of vehicle from vehicle theft or burglary. It is very useful and important for alert the people who have vehicle to protect it from theft. This is a very important system to be implemented at the main door of vehicle. The project started to work when the user access either than one system fingerprint or smart tag to lock and unlock the door. The fingerprint system only user can access their fingerprint whereas the smart tag system can access by user or user's intimate relative when they borrow the vehicle for emergency. The vehicle door cannot be opened when unmatched fingerprint is access or incorrect smart tag is access. Once the incorrect smart tag is access by unauthorized person, the buzzer will be activated and produce a high level of alarm sound to alert the user. The Arduino Uno microcontroller is controlled by the entire system of the project.

### DEDICATION

I would like to dedicate my thesis to my beloved parents (Mr. SAMINATHAN s/o PERIAPIAN and Mrs. NAUNILLA d/o PERUMAL), my siblings (KOMATHY d/o SAMINATHAN and ANBARASAN s/o SAMINATHAN) and my dear friends.

#### ACKNOWLEDGEMENTS

I would like to express my gratitude and appreciation to the God for giving his bless upon completing my final year project throughout the hardship I have endured and giving me endless strength to face the project.

Moreover, I also want to address my supervisor DR Jamil Abedalrahim Jamil Alsayaydeh for the motivation, patience and full commitment by helping me to completing my final year project successfully.

Furthermore, not forgot my biggest gratitude toward my family especially my parent Mr. Saminathan s/o Periapian and Mrs. Naunilla d/o Perumal and my siblings Komathy and Anbarasan for giving endless support of money motivation and love for me.

My sincere gratitude also to all my friends who have helped me in completing this project and also on my writing report. Thank you.

Saravanan s/o Saminathan

# TABLE OF CONTENTS

| Abst   | rak                |                   |                  | vi      |
|--------|--------------------|-------------------|------------------|---------|
| Abst   | ract               |                   |                  | vii     |
| Dedi   | cation             |                   |                  | viii    |
| Ackr   | nowledger          | nent              |                  | ix      |
| Table  | e of Conte         | ent               |                  | x-xiv   |
| List o | of Tables          |                   |                  | XV      |
| List o | of Figures         |                   |                  | xvi-xix |
| CHA    | APTER 1:           | INTROD            | UCTION           | 1       |
| 1.0    | Introdu            | iction            |                  | 1       |
| 1.1    | Project            | Backgrour         | d                | 1-2     |
| 1.2    | Probler            | Problem Statement |                  |         |
| 1.3    | Project Objectives |                   | 3                |         |
| 1.4    | Scope of Project   |                   |                  | 4       |
| CHA    | APTER 2:           | LITERA            | TURE REVIEW      | 5       |
| 2.0    | Introdu            | iction            |                  | 5       |
| 2.1    | Facts a            | nd Finding        |                  | 5       |
|        | 2.1.1              | Domain            |                  | 5-6     |
|        | 2.1.2              | Statistic of      | of Vehicle Theft | 6-8     |
|        | 2.1.3              | Types of          | Vehicle Theft    | 9       |
|        |                    | 2.1.3.1           | Carjacking       | 9       |
|        |                    | 2.1.3.2           | Joyriding        | 9-10    |

Х

|     |          | 2.1.3.3     | Vehicle Identification Number Scam              | 10    |
|-----|----------|-------------|-------------------------------------------------|-------|
|     |          | 2.1.3.4     | Resale and Export of Vehicle Parts              | 11    |
|     | 2.1.4    | Ways to I   | Protect Vehicles from Vehicle Theft             | 11-12 |
| 2.2 | Radio F  | requency I  | dentification (RFID) Sensor                     | 13    |
|     | 2.2.1    | Types of    | RFID Sensor                                     | 14    |
|     | 2.2.2    | Types of    | RFID Tag                                        | 15    |
|     |          | 2.2.2.1     | Active RFID Tag                                 | 15    |
|     |          | 2.2.2.2     | Passive RFID Tag                                | 15    |
|     |          | 2.2.2.3     | Semi-Passive RFID Tag                           | 15    |
|     | 2.2.3    | Comparis    | on between Active, Passive and Semi-Passive Tag | 16    |
|     | 2.2.4    | The RFID    | O Tags                                          | 16    |
| 2.3 | Fingerp  | rint Sensor |                                                 | 17    |
|     | 2.3.1    | Optical F   | ingerprint Sensor                               | 17    |
|     | 2.3.2    | Capacitiv   | e Fingerprint Sensor                            | 18    |
|     | 2.3.3    | Comparis    | on between Capacitive and Optical Fingerprint   | 19    |
|     |          | Sensor      |                                                 |       |
| 2.4 | Arduino  |             |                                                 | 19    |
| 2.5 | Buzzer   |             |                                                 | 20    |
|     | 2.5.1    | Comparis    | on between Magnetic and Piezo Buzzer            | 20    |
| 2.6 | Liquid ( | Crystal Dis | play (LCD)                                      | 21    |
| 2.7 | Microco  | ontroller   |                                                 | 21    |
|     | 2.7.1    | Arduino U   | Uno                                             | 22    |
|     |          | 2.7.1.1     | Microcontroller                                 | 22    |
|     |          | 2.7.1.2     | External Power Supply                           | 22    |

xi

|                                                |                                                                                                        | 2.7.1.3 USB Plug                                                                                                                                                                                               | 22                                                                 |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                |                                                                                                        | 2.7.1.4 Reset Button                                                                                                                                                                                           | 22                                                                 |
|                                                |                                                                                                        | 2.7.1.5 Analog Pins                                                                                                                                                                                            | 22                                                                 |
|                                                |                                                                                                        | 2.7.1.6 Digital I/O Pins                                                                                                                                                                                       | 23                                                                 |
| 2.8                                            | Light E                                                                                                | mitting Diode (LED)                                                                                                                                                                                            | 24                                                                 |
| 2.9                                            | Existing                                                                                               | g Project                                                                                                                                                                                                      | 25                                                                 |
|                                                | 2.9.1                                                                                                  | Smart Vehicle Safety System Using Arduino                                                                                                                                                                      | 25                                                                 |
|                                                | 2.9.2                                                                                                  | Fingerprint Based Anti-Theft System for Vehicle Safety                                                                                                                                                         | 26                                                                 |
|                                                | 2.9.3                                                                                                  | Microcontroller Based Smart Card Car Security System                                                                                                                                                           | 27                                                                 |
| 2.10                                           | Compar                                                                                                 | ison between existing system and update system                                                                                                                                                                 | 28                                                                 |
| 2.11                                           | Summar                                                                                                 | ry                                                                                                                                                                                                             | 29                                                                 |
|                                                |                                                                                                        |                                                                                                                                                                                                                |                                                                    |
|                                                |                                                                                                        |                                                                                                                                                                                                                |                                                                    |
| CHAI                                           | PTER 3:                                                                                                | METHODOLOGY                                                                                                                                                                                                    | 30                                                                 |
| <b>CHAH</b><br>3.0                             | PTER 3:<br>Introduc                                                                                    | <b>METHODOLOGY</b><br>etion                                                                                                                                                                                    | <b>30</b><br>30                                                    |
| <b>CHAH</b><br>3.0<br>3.1                      | PTER 3:<br>Introduc<br>Method                                                                          | <b>METHODOLOGY</b><br>etion                                                                                                                                                                                    | <b>30</b><br>30<br>31                                              |
| <ul><li>CHAI</li><li>3.0</li><li>3.1</li></ul> | PTER 3:<br>Introduc<br>Method<br>3.1.1                                                                 | <b>METHODOLOGY</b><br>etion<br>Planning                                                                                                                                                                        | <b>30</b><br>30<br>31<br>31                                        |
| <ul><li>CHAI</li><li>3.0</li><li>3.1</li></ul> | PTER 3:<br>Introduc<br>Method<br>3.1.1<br>3.1.2                                                        | METHODOLOGY<br>etion<br>Planning<br>Project Schedule                                                                                                                                                           | <b>30</b><br>30<br>31<br>31<br>31<br>31-32                         |
| CHAH<br>3.0<br>3.1                             | PTER 3:<br>Introduce<br>Method<br>3.1.1<br>3.1.2<br>3.1.3                                              | METHODOLOGY<br>etion<br>Planning<br>Project Schedule<br>Collect Important Data                                                                                                                                 | <b>30</b><br>30<br>31<br>31<br>31-32<br>33                         |
| CHAH<br>3.0<br>3.1                             | PTER 3:<br>Introduce<br>Method<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4                                     | METHODOLOGY<br>etion<br>Planning<br>Project Schedule<br>Collect Important Data<br>Project Designing                                                                                                            | <b>30</b><br>30<br>31<br>31<br>31-32<br>33<br>33                   |
| CHAH<br>3.0<br>3.1                             | PTER 3:<br>Introduce<br>Method<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5                            | METHODOLOGY<br>etion<br>Planning<br>Project Schedule<br>Collect Important Data<br>Project Designing<br>Block Diagram                                                                                           | <b>30</b><br>30<br>31<br>31<br>31-32<br>33<br>33<br>34             |
| CHAH<br>3.0<br>3.1                             | PTER 3:<br>Introduce<br>Method<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6                   | METHODOLOGY<br>etion<br>Planning<br>Project Schedule<br>Collect Important Data<br>Project Designing<br>Block Diagram<br>Flow Chart of Overall Progress                                                         | <b>30</b><br>30<br>31<br>31<br>31-32<br>33<br>33<br>34<br>35-36    |
| CHAH<br>3.0<br>3.1                             | PTER 3:<br>Introduce<br>Method<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.1.7          | METHODOLOGY<br>etion<br>Planning<br>Project Schedule<br>Collect Important Data<br>Project Designing<br>Block Diagram<br>Flow Chart of Overall Progress<br>Flow Chart of Project System                         | <b>30</b><br>30<br>31<br>31<br>31-32<br>33<br>34<br>35-36<br>37-38 |
| CHAH<br>3.0<br>3.1                             | PTER 3:<br>Introduce<br>Method<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.1.7<br>3.1.8 | METHODOLOGY<br>ction<br>Planning<br>Project Schedule<br>Collect Important Data<br>Project Designing<br>Block Diagram<br>Flow Chart of Overall Progress<br>Flow Chart of Project System<br>Requirement Analysis | 30<br>30<br>31<br>31<br>31-32<br>33<br>34<br>35-36<br>37-38<br>39  |

|     | 3.2.1   | Arduino IDE Software                             | 40    |
|-----|---------|--------------------------------------------------|-------|
| 3.3 | Hardw   | are Implementation                               | 41    |
|     | 3.3.1   | Arduino Uno (Atmega328P)                         | 41    |
|     | 3.3.2   | Optical Fingerprint Sensor                       | 41    |
|     | 3.3.3   | RFID Sensor                                      | 42    |
|     | 3.3.4   | Piezo Buzzer                                     | 42    |
|     | 3.3.5   | DC Motor Driver L293D                            | 42    |
| 3.4 | Expect  | ed Result                                        | 43    |
| 3.5 | Testing |                                                  | 43    |
| 3.6 | Mainte  | mance                                            | 43    |
|     |         |                                                  |       |
| CHA | PTER 4  | : RESULT AND DISCUSSION                          | 44    |
| 4.0 | Introdu | iction                                           | 44    |
| 4.1 | Testing | g Stage                                          | 44    |
|     | 4.1.1   | Optical Fingerprint                              | 45-46 |
|     | 4.1.2   | Radio Frequency Identification (RFID)            | 47-48 |
|     | 4.1.3   | Liquid Crystal Display (LCD)                     | 49    |
|     | 4.1.4   | Buzzer                                           | 50    |
| 4.2 | Prototy | vpe of the Project                               | 51-53 |
| 4.3 | Flow o  | f how does the Project Work                      | 54    |
|     | 4.3.1   | Schematic Diagram                                | 54-55 |
|     | 4.3.2   | Import Fingerprint and RFID library into Arduino | 56-57 |
|     | 4.3.3   | Access Fingerprint or Smart Tag                  | 57-59 |
| 4.4 | Implen  | nentation Phase                                  | 60-68 |
| 4.5 | Project | Result and Analysis xiii                         | 69-71 |

| 4.6 | Summary             | 72    |
|-----|---------------------|-------|
| СНА | APTER 5: CONCLUSION | 73    |
| 5.0 | Introduction        | 73    |
| 5.1 | Conclusion          | 73    |
| 5.2 | Recommendation      | 74    |
| REF | ERENCE              | 75-76 |
| APP | ENDIX               | 77-88 |

# LIST OF TABLES

| TABLE     | TITLE                                                        | PAGE |
|-----------|--------------------------------------------------------------|------|
|           |                                                              |      |
| Table 2.1 | Comparison between Active, Passive and Semi-Passive Tags     | 16   |
| Table 2.2 | Comparison between Capacitive and Optical Fingerprint        |      |
|           | Sensor                                                       | 19   |
| Table 2.3 | Comparison between Magnetic and Piezo Buzzer                 | 20   |
| Table 2.4 | Comparison between existing systems and update system        | 28   |
| Table 3.1 | Gantt chart of the project activity for FYP 1 and FYP 2      | 32   |
| Table 4.1 | Average score number of fingerprint match by Fingerprint ID  | 69   |
| Table 4.2 | Average score number of fingerprint match by Fingerprint ID2 | 2 69 |
| Table 4.3 | Average score number of fingerprint match by Fingerprint ID3 | 3 70 |
| Table 4.4 | Average score number of fingerprint match by Fingerprint ID4 | 70   |
| Table 4.5 | Average score number of fingerprint match by Fingerprint IDS | 5 70 |
| Table 4.6 | The average score number of fingerprint match against 5      |      |
|           | different Fingerprint IDs.                                   | 71   |

xv

# LIST OF FIGURES

| FIGURE      | TITLE                                                 | PAGE |
|-------------|-------------------------------------------------------|------|
| Figure 2.1  | Number of stolen private cars in Malaysia             | 7    |
| Figure 2.2  | Number of registered cars in Malaysia                 | 7    |
| Figure 2.3  | Rate of stolen vehicle per 100,000 vehicles for same  |      |
|             | 20 countries                                          | 8    |
| Figure 2.4  | RC522 RFID Tag Sensor                                 | 13   |
| Figure 2.5  | the Active RFID Sensor                                | 14   |
| Figure 2.6  | the Passive RFID Sensor                               | 14   |
| Figure 2.7  | Example of RFID S50 IC cards and tags                 | 16   |
| Figure 2.8  | Optical Fingerprint Sensor                            | 17   |
| Figure 2.9  | Capacitive Fingerprint Sensor                         | 18   |
| Figure 2.10 | Buzzer                                                | 20   |
| Figure 2.11 | LCD Display                                           | 21   |
| Figure 2.12 | Arduino UNO Board                                     | 23   |
| Figure 2.13 | Light Emitting Diode (LED)                            | 24   |
| Figure 2.14 | Block Diagram of Safety System                        | 25   |
| Figure 2.15 | Block Diagram for Fingerprint Based Anti-Theft System | 26   |
| Figure 2.16 | Block Diagram of connection hardware and software     | 27   |
| Figure 3.1  | Three major steps in methodology                      | 30   |
| Figure 3.2  | Block diagram of Vehicle Door Security using Smart    |      |
|             | Tag and Fingerprint System                            | 34   |

| Figure 3.3  | Flow Chart of Overall Progress                               | 35 |
|-------------|--------------------------------------------------------------|----|
| Figure 3.4  | Flow Chart of Smart Tag System                               | 37 |
| Figure 3.5  | Flow Chart of Fingerprint System                             | 38 |
| Figure 3.6  | Logo of Arduino IDE software                                 | 40 |
| Figure 4.1  | Testing to connected Optical Fingerprint Sensor with         |    |
|             | Arduino Uno                                                  | 45 |
| Figure 4.2  | The code program tested in Fingerprint System                | 46 |
| Figure 4.3  | Testing to connected RFID with Arduino Uno                   | 47 |
| Figure 4.4  | The code program tested in Smart Tag System                  | 48 |
| Figure 4.5  | Testing for display the title of project on LCD              | 49 |
| Figure 4.6  | Testing for display whether choose tag or fingerprint on LCD | 49 |
| Figure 4.7  | The code program tested in LCD                               | 49 |
| Figure 4.8  | The code program tested in buzzer when correct and wrong tag | Ş  |
|             | is access                                                    | 50 |
| Figure 4.9  | Prototype of Vehicle Door Security using Smart Tag and       |    |
|             | Fingerprint System                                           | 51 |
| Figure 4.10 | The top part of box                                          | 51 |
| Figure 4.11 | Part of placed RFID Sensor with connecting wires             | 52 |
| Figure 4.12 | The part of inside box placed with Arduino Uno and Relay     | 52 |
| Figure 4.13 | The USB port and power supply port to connect with PC        | 53 |
| Figure 4.14 | The stepper motor is in lock and unlock the door             | 53 |
| Figure 4.15 | The RFID Tag which label tape is access tag                  | 53 |
| Figure 4.16 | Schematic Diagram of Vehicle Door Security using Smart       |    |
|             | Tag and Fingerprint                                          | 54 |

### xvii

| Figure 4.17 | The steps to find the zip file of both sensor's library        | 56 |
|-------------|----------------------------------------------------------------|----|
| Figure 4.18 | Select the RFID and Adafruit Fingerprint zip files for import  |    |
|             | in Arduino                                                     | 56 |
| Figure 4.19 | The LED lit up and stepper motor turned to lock door when      |    |
|             | access fingerprint                                             | 57 |
| Figure 4.20 | The LED turned off and stepper motor turned to unlock          |    |
|             | door when same fingerprint access again                        | 57 |
| Figure 4.21 | The serial monitor display the output when fingerprint access  |    |
|             | two times                                                      | 57 |
| Figure 4.22 | The LED lit up and stepper motor turned to lock door when      |    |
|             | access RFID tag                                                | 58 |
| Figure 4.23 | The LED turned off and stepper motor turned to unlock          |    |
|             | door when same tag access again                                | 58 |
| Figure 4.24 | The serial monitor display the output with number of tag       |    |
|             | unique identifier (UID) when tag access two times              | 58 |
| Figure 4.25 | The LED remain unchanged when invalid tag is access and        |    |
|             | the buzzer produce alarm sound                                 | 59 |
| Figure 4.26 | The serial monitor display the output of invalid tag is access | 59 |
| Figure 4.27 | The library that include in the program                        | 60 |
| Figure 4.28 | The variables that used in the program                         | 61 |
| Figure 4.29 | Check whether the fingerprint is registered in scanner         | 61 |
| Figure 4.30 | Void setup                                                     | 62 |
| Figure 4.31 | Verify the matched fingerprint                                 | 63 |
| Figure 4.32 | Void loop                                                      | 63 |

## xviii

| Figure 4.33 | Void fingerprint                                          | 64 |
|-------------|-----------------------------------------------------------|----|
| Figure 4.34 | Access the fingerprint Identification                     | 64 |
| Figure 4.35 | Search the matched fingerprint                            | 65 |
| Figure 4.36 | Found the fingerprint identification                      | 66 |
| Figure 4.37 | Void RFID                                                 | 66 |
| Figure 4.38 | If statement of verification of RFID tag                  | 67 |
| Figure 4.39 | to allowed the tag access with 4 times using counter      | 67 |
| Figure 4.40 | Void allowed                                              | 68 |
| Figure 4.41 | Void denied                                               | 69 |
| Figure 4.42 | Bar chart on the five different fingerprint ID versus the |    |
|             | average value of score number                             | 71 |

# LIST OF APPENDICES

### APPENDIX

### TITLE

PAGE

1

Code Program

77-88

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.0 Introduction

The principle ideas and development of the vehicle door security using smart tag and fingerprint system are given in this chapter. In this chapter, the clarification of the project background, problem statement, objectives and project scope will create into few areas. Furthermore, the system of this project will be explained on how it is functioning and it's important for people in this chapter. Besides, the most punctual reference purpose of the planning for this vehicle security system will creatures serves also in first chapter. This segment are important since it will be the guidance for the clients. The developer can achieve the desired objectives dependent on the segments included into this section with the plainly decided clarification stated.

#### 1.1 Project Background

Nowadays, vehicle especially car is an automobile and most important transport for human. As the term of statistics, there are many cases or reports due to the vehicle burglaries and theft and it keep increase time by time. The crime statistical reports state that vehicle burglary are increasing dramatically around the world especially in Malaysia. According to the General Insurances Association of Malaysia (PIAM) report, Malaysia is a one of the top 10 ranking country in the world for vehicle burglary. The statistic of vehicle theft for first half of year 2016 was 11,796 number of vehicles. This issue has created fear among the people. In this way, there are many ways that have been taken via vehicle owner to more secure the car from burglaries or theft. Hence, every vehicle it is important to have or install a security system. In era of globalization, security system assumes as essential element to prevent unauthorized person that cannot be entry at secured place without approved from owner. Meanwhile, the security system was essentially divided into two different kind which used a usual key of door lock and another is used an electronic automatic identification system. In general, lock was simple device that can be hacked by unauthorized person. The lock system was fake functional used in security system. Most of the alarm system is using it worked in alarm to send notification to the vehicle owner. The vehicle owner just knows their vehicle status in this range which depends on their alarm sirens only. An elective strategy is expected to increase the scope of effectiveness and the proprietor will have better security notification if their vehicle.

The title of this project is Development of Vehicle Door Security using Smart Tag and Fingerprint System. These two systems can provide a protection for vehicle from theft and also for the security purpose. The smart tag system is using for access the tag which have security password by user to unlock the vehicle door. Besides, the fingerprint system is high performance security technique using for access user's fingerprint to unlock the vehicle door. In this project, user can access either than one of these two systems allow to open the vehicle door. The fingerprint system only user can access their fingerprint whereas the smart tag system can access by user or user's intimate relative when they borrow the vehicle for emergency. In the case that the smart tag is missing or stolen by unauthorized person, the user can block their tag immediately for cannot to be access again because the tag have security password. Moreover, the vehicle door cannot be opened when unmatched fingerprint is access or incorrect smart tag is access. Otherwise, the buzzer will be activated and produce a high level of alarm sound to alert the user when any unauthorized person could have attempt to theft. In addition, the entire system of this project is controlled by Arduino Uno to achieve the aim in this project.

### **1.2 Problem Statement**

Nowadays, vehicle theft is a kind of assets crime that frequently occurred in Malaysia. By the quick advancement of technology and development of many innovation in Malaysia, the quantity of this crime still can't be reduced. This incident is happened because of minimum standard of security system is installed by vehicle manufacturers such as alarm system. However, this system is not effective enough for security because of low limitation range between vehicle and its owner. By this way, theft can attempt easy to deactivate the security system in the several seconds. Other than that, the insurance agencies have higher pressure as they need to pay the claims made by the clients. As a result, the insurance agencies need to improve the insurance premium. For this situation only a small percentage of people could manage the cost of a good insurance premium. The rise of the insurance premium is causes of installed the shortage of security system to the vehicle. Within this project, the vehicle door security using smart tag and fingerprint systems were developed to prevent the vehicle burglary. Even though, the cost must be affordable and the owner could keep their vehicle with full safety.

### **1.3 Project Objectives**

There are several objectives that have been recognized in this project and listed as below:

- 1. To develop the security system for vehicle by using fingerprint and smart tag technology.
- 2. To design a circuit using Arduino UNO in the support of Smart tag and Fingerprint Systems.
- 3. To protect the safety of vehicle from vehicle theft.

### **1.4 Scope of Project**

In order implementing this project, various scopes have been detected. This project can prevent theft and burglaries that often occurs around us nowadays. With the occurrence of this project, most vehicle proprietor can keep their vehicle without any fear. I am also designing this project with low cost with high performance and fulfill of secure.

The advancement of the security system is continuing developing quickly by every year. The security system top need is the wellbeing issue where this system cover about the controlling and dealing with devices. Besides, the design of the security system control demonstrates an extraordinary effect in term of production cost and maintenance cost. At present, most vehicle security system solutions have been done by the use of usual technologies such as alarm system. Unfortunately, it is less secure due to its restriction distance.

In this project, the vehicle security system is developing by using Smart Tag and Fingerprint System is better way to prevent the vehicle theft. Otherwise, the basic information about components will be discussed briefly including Smart Tag Reader, Fingerprint Sensor and a few devices and Arduino UNO software application. The goal of this project is to protect the safety of vehicle from vehicle theft. This chapter will briefly explain about the study and the idea based on the previous project together with the theory to achieve the aim of this project. The hardware and software of this project will be analyzing each part in details.