

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ELECTROMYOGRAPHY SENSING ON TIBIALIS AND PERONEUS MUSCLE AGAINST IMPROVISED FLAT FEET ORTHOTIC INSOLE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Manufacturing Engineering Technology (Product Design) with Honours.

by

NURATIFAH BINTI ABDUL KUDUS B071510362 960311055614

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: ELECTROMYOGRAPHY SENSING ON TIBIALIS AND PERONEUS

MUSCLE AGAINST IMPROVISED FLAT FEET ORTHOTIC INSOLE

Sesi Pengajian: 2018/19 Semester 1

Saya **NURATIFAH BINTI ABDUL KUDUS** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

d

	SULIT*		klumat yang berdarjah keselamatan atau yysia sebagaimana yang termaktub dalam ASMI 1972.		
	TERHAD*		lumat TERHAD yang telah ditentukan oleh i mana penyelidikan dijalankan.		
\boxtimes	TIDAKTERHAD				
Yang l	benar,		Disahkan oleh penyelia:		
NURATIFAH BINTI ABDUL KUDUS Alamat Tetap:No.2, Jalan Permai 2, Taman Desa Prmai, Mampong, 71300 Rembau, Negeri Sembilan.		Permai 2, Taman	Puan Umi Hayati binti Ahmad		
Negen	i Semonan.		Cop Rasmi Penyelia		
Tarikh	:		Tarikh:		
Jika Lapor	an PSM ini SULIT atau	TERHAD, sila lampirkar	n surat daripada pihak berkuasa/organisasi berkenaan		
engan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.					
	ii				

DECLARATION

I hereby, declared this report entitled ELECTROMYOGRAPHY SENSING ON TIBIALIS AND PERONEUS MUSCLE AGAINST IMPROVISED FLAT FEET ORTHOTIC INSOLE is the results of my own research except as cited in references.

Signature:....Author:NURATIFAH BINTI ABDUL KUDUSDate:....

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Product Design) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	Puan Umi Hayati binti Ahmad

Signature:Co-supervisor:Encik Mohd. Hidayat Bin Abdul Rahman

iv

ABSTRAK

Sukan memainkan peranan penting dalam kehidupan manusia kerana ia mengekalkan kesihatan badan. Golongan muda mahupun tua banyak terlibat dalam aktiviti sukan.Lapik kaki yang mempunyai serapan yang baik adalah penting untuk mengurangkan kesakitan kaki semasa melakukan sebarang aktiviti sukan. Bagi individu yang mempunyai bentuk kaki yang normal, ini bukan masalah besar apabila melakukan aktiviti sukan, tetapi untuk individu yang mempunyai bentuk kaki yang rata, mereka menghadapi pelbagai risiko semasa melakukan aktiviti sukan seperti sakit di bahagian lekuk kaki dan lenguh. Kepentingan projek ini dijalankan adalah untuk mengesan elektromilografi pada otot tibial dan peroneal terhadap pelapik kaki ortotik. Ciri-ciri utama reka bentuk pelapik kaki ortotik adalah mempunyai sokongan lengkungan yang cukup, pad tumit, pad metatarsal dan cawan tumit yang mendalam. Analisis tekanan plantar kaki diambil untuk meneliti bahagian tekanan tertinggi pada tapak kaki. Proses pembuatan bagi pelapik kaki ortotik ini terbahagi kepada dua iaitu proses acuan kayu dan proses pemutus vakum. Bahan yang digunakan dalam pembuatan pelapik kaki ortotik bagi telapak kaki rata adalah Flexifoam X. Kedua-dua pelapik kaki ortotik dinilai dan dibandingkan oleh electromyography (EMG) pada otot tibial dan peroneal yang dihasilkan oleh kekuatan otot semasa pergerakan kaki.

ABSTRACT

Sports play a great role in human life as it keeps body healthy and active. Youngest and adults involved in sports. The great shock absorber of the insole for the foot is important to reduce the foot pain while doing sports. For normal feet, it is not the big issue when doing sports, but for flat feet person, they undergo high-risk associate on foot pain, foot problems while doing sports activities such as running. This project presents electromyography sensing on tibialis and peroneus muscle against improvised flat feet orthotic insole .The main characteristics of orthotics insole design are sufficient arch support, heel pad, metatarsal pads and deep heel cup. Ergonomics length, width and thickness of orthotics insole are based on the survey questionnaire of Malaysian standards foot size that has been distributed online. The foot plantar pressure analysis is obtained to research the highest pressure on plantar foot area. The process fabricating the orthotics insole is divided into two which are wood moulding process. Flexifoam X is used in fabricating the improvised orthotic insole for flat feet. The comparison was made on fabricated orthotics insole with the existing orthotics insole that comes from the different material. Both of the orthotics insoles are evaluated and compared against the measured data of electromyography (EMG) at tibialis anterior and peroneus longus that generated by the muscle strength responsible for the lower limb movement. The sult shown that fabricated insole showed a bit of improvement based on the electromyography sensing testing on muscle fatique compare to the existing insole.

DEDICATION

To my beloved parents and siblings

Abdul Kudus bin Mahat Norhayati binti Hasim Nurhanisah binti Abdul Kudus Nurhidayah binti Abdul Kudus Nur Arif Aiman bin Abdul Kudus Nur Ain Safiah binti Abdul Kudus

Thank you for all supports, sacrifices and patients that have been shared with me.

To my honoured supervisor and co-supervisor

Puan Umi Hayati binti Ahmad & Encik Mohd. Hidayat Bin Abdul Rahman

Thank you for always giving me guidance to complete this thesis project.

vii

ACKNOWLEDGEMENTS

In the name of Allah S.W.T, the most merciful and compassionate, praise to Allah the lord of the universe and may blessings and peace of Allah be upon his messenger Muhammad S.A.W. First and foremost, thank Allah for giving me wellness and ideas to complete my thesis project during the time given by my university.

I would like to express the deepest appreciations to my supervisor Puan Umi Hayati Binti Ahmad, who give me to support finish my final year project. Next, a lot of thank lab assistant who guiding and help me this on this project especially Encik Zulkifli bin Jantan, project lab assistant. I am also thankful for the all respondents of my questionnaires and experimental testing by giving their precious time to accomplish my project successfully.

Finally, I would like to express my gratitude towards my family for their supports and positives vibes while carrying out this thesis project. They have helps me a lot in financial support. Thank you for all my friends who is the best person who always on my side in making this thesis project.

TABLE OF CONTENTS

		PAGE
DEC	CLARATION	iii
APP	PROVAL	iv
ABS	STRACT	vi
DED	DICATION	vii
ACK	KNOWLEDGEMENTS	viii
TAB	BLE OF CONTENTS	ix
LIST	T OF TABLES	xvi
LIST	T OF FIGURES	xvii
LIST	T OF ABBREVIATIONS	xxii
	APTER 1 INTRODUCTION	1
1.0	Introduction	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Research Objective	4
1.4	Scope	4
СНА 2.0	APTER 2 LITERATURE REVIEW	6 6
2.0	muoduction	0

ix

2.1	Anatomy of Human Foot	6
2.2	Foot types	8
2.3	Flat feet	10
2.3.1	Flexible Flat Feet	11
2.3.2	Flexible Flat Foot with Short Tendo-Achilles	12
2.3.3	Rigid Flat Feet	13
2.4	Flat Feet Among Adults	14
2.5	Classifications of Orthotics Insole	15
2.6	Orthotics Insole for Sports	16
2.7	Ergonomic	17
2.7.1	Anthropometry of the human foot	18
2.8	Gait Analysis	19
2.8.1	EMG signal	20
2.8.2	Time domain (TD) feature	21
2.8.3	Frequency domain feature	21
CHAI 3.0	PTER 3 METHODOLOGY Introduction	23 23
5.0		25
3.1	Project Planning	23
3.1.1	First Stage: Planning	24
3.1.2	Second Stage: Implementation	24

3.1.3	Third Stage: Analysis	25
3.2	Flowchart of Project Development	25
3.3	Research on foot size and design requirement	28
3.3.1	Survey questionnaire	28
3.3.2	Insole size for Malaysian (male and female)	29
	3.3.2.1 Overall foot size for male	. 30
	3.3.2.2 Overall foot size for a female	. 31
3.4	Morphological Chart of Orthotics Insoles	31
3.5	Design Selection of Orthotics Insole	32
3.5.1	Sketching of orthotics insole	33
	3.5.1.1 Sketching 1	. 33
	3.5.1.2 Sketching 2	. 34
	3.5.1.3 Sketching 3	. 35
	3.5.1.4 Sketching 4	. 36
3.6	Concept Screening	36
3.7	Overview design of selected orthotics insole	38
3.7.1	Sketching selection orthotics insole	38
3.7.2	Main characteristics of orthotics insole	39
3.7.3	Ergonomics width, length, and thickness	39
3.7.4	Sufficient arch support	41

	3.7.4.1 Metatarsal Pads	42
3.7.5	Deep heel cup	42
	3.7.5.1 Heel Pad	42
	3.7.5.2 SolidWorks part orthotics insole	43
	3.7.5.3 Flat feet orthotics insole for men	43
	3.7.5.4 Flat feet orthotics insole for women	45
3.7.6	SolidWorks Process of orthotics insole part	47
3.7.7	SolidWorks mould (Core and Cavity) of Orthotics Insole	53
	3.7.7.1 SolidWorks mould of Male Orthotics Insole	54
	3.7.7.2 SolidWorks mould of Female Orthotics Insole	56
3.8	Mould Making of the mould of the orthotic insole by Wood Moulding Proces	ss57
3.8.1	Material Selection (Pinewood)	57
3.8.2	Wood Moulding Process: CNC wood router	58
3.8.3	The mould of orthotic s insole	59
3.8.4	Orthotics Insole Part Making Process	60
3.9	Evaluating Process and Analysis	63
3.9.1	Electromyography (EMG)	63
3.9.2	Subject of Experimental	63
3.9.3	Data pre-processing	66
3.9.1	Data pre-processing	66

3.9.2	Experimental Procedure	66
3.9.3	Experimental Precaution	67
3.9.4	Running Form	67
3.9.5	Raw Signal	68
3.9.6	Placement of Sensor on Lower Limb Muscle	68
3.9.7	Surface electromyography (EMG) measurement	70
3.9.8	Data Analysis and Feature Extraction	70
	3.9.8.1 Time Domain Analysis	. 71
	3.9.8.2 Frequency domain analysis	. 71
3.10	Flowchart of Overall Design and Process	72
3.11	Expected Result	73
	Expected Result PTER 4 RESULT & DISCUSSION Introduction	73 74 74
CHAI	PTER 4 RESULT & DISCUSSION	74
CHAI 4.0	PTER 4 RESULT & DISCUSSION Introduction	74 74
CHAI 4.0 4.1	PTER 4 RESULT & DISCUSSION Introduction Differentiation of Datum Insole and Experimental Insole	74 74 75
CHAI 4.0 4.1 4.2	PTER 4 RESULT & DISCUSSION Introduction Introduction Differentiation of Datum Insole and Experimental Insole Feature extraction in dynamic contraction	74 74 75 76
 CHAI 4.0 4.1 4.2 4.2.1 	PTER 4 RESULT & DISCUSSION Introduction Differentiation of Datum Insole and Experimental Insole Feature extraction in dynamic contraction Class of raw signal between 4 respondents	74 74 75 76 77
 CHAI 4.0 4.1 4.2 4.2.1 4.3 	PTER 4 RESULT & DISCUSSION Introduction Differentiation of Datum Insole and Experimental Insole Feature extraction in dynamic contraction Class of raw signal between 4 respondents Time domain analysis (RMS)	74 74 75 76 77 80 82

xiii

4.4.2	Data Analyze on Tibialis Anterior Muscles of Existing Orthotic Insole among	4
respon	idents	84
4.4.3	Data Analyze on Peroneus Longus Muscles of Fabricating Orthotic Insole am	ong
4 resp	ondents	86
4.4.4	Data Analyze on Peroneus Longus Muscles of Existing Orthotics Insole amon	ig 4
respon	idents	87
4.4.5	Normalized RMS value (Average of RMS between fabricating and existing	
insole)	89
4.5	Frequency Domain Analysis	91
4.5.1	Median frequency on tibialis anterior muscle for fabricating orthotics insole	91
4.5.2	Median frequency on tibialis anterior muscle for existing orthotic insole	93
4.5.3	Median frequency on peroneus longus muscle for fabricating orthotic insole	94
4.5.4	Median frequency on peroneus longus muscle for existing orthotic insole	96
4.5.5	Average median frequency of fabricating and existing orthotics insole for	
tibialis	s anterior muscle	97
4.5.6	The average median frequency of fabricating and existing orthotics insole for	r
perone	eus longus muscle	99
CHAI 5.0		101 101
5.0		101
5.1	Summary of The Project Research	101
5.2	Limitation	102

xiv

APPENDIX		109
REFE	RENCES	105
5.5	Project Potential	104
5.4	Conclusion	103
5.3	Recommendation	103

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1	: Analysis of foot size of male and female	29
Table 3.2	: Standard foot size for Malaysia based on UK standard size	30
Table 3.3.3	: The average standardize for foot anthropometry of male and female	40
Table 3.4	: Table of BMI Index	63
Table 3.5	: Table of measurement specification of flat feet respondents	64
Table 4.1	: Table of raw signals on electromyography signals on tibialis anterior and peroneus longus muscles among 4 respondents	77
Table 4.2	: RMS amplitude for tibialis anterior and peroneus longus for fabricating and existing insole	80
Table 4.3	: Average RMS of Tibialis Anterior Muscle	89
Table 4.4	: Average RMS of Peroneous Longus Muscle	90
Table 4.5	: Average Median Frequency for fabricating and existing insol between 4 respondent on tibialis longus muscle	e 97
Table 4.6	: Average Median Frequency for fabricating and existing insol between 4 respondent on peroneus longus muscle	e 99

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	: Structure of human foot	7
Figure 2.2	: Type of foot	9
Figure 2.3	: Flat feet Leg	10
Figure 2.4	: Flexible Flat Feet	11
Figure 2.5	: Flexible Flat Foot with Short Tendo- Achilles	12
Figure 2.6	: Rigid Flat Feet	13
Figure 2.7	: Classification of orthotics insole	16
Figure 2.8	: Example of the human body part for anthropometry data of	collection18
Figure 2.9	: Example of anthropometry of the human foot	19
Figure 2.10	: Electromyography technique	20
Figure 3.1	: Figure of Development of Project Flowchart	27
Figure 3.2	: Analysis of genders	28
Figure 3.3	: Analysis of types of feet	28
Figure 3.4	: Analysis of foot length size between male and female	29
Figure 3.5	: Graph of foot size of male and female	30
Figure 3.6	: Conceptual design 1	33
Figure 3.7	: Conceptual Design 2	34
Figure 3.8	: Conceptual Design 3 xvii	35
	A V 11	

Figure 3.9	: Conceptual Design	36
Figure 3.10	: Selected Design Concept (Concept 3)	38
Figure 3.11	: Characteristic of the orthotic insole for flat feet	39
Figure 3.12	: Insole with arch support	41
Figure 3.13	: Insole with metatarsal pad support	42
Figure 3.14	: Insole with deep heel support	43
Figure 3.15	: Isometric view men orthotics insole (left and right)	43
Figure 3.16	: Top view men orthotics insole (left and right)	44
Figure 3.17	: Front view men orthotics insole	44
Figure 3.18	: Right view men orthotics insole	45
Figure 3.19	: Left view men orthotics insole	45
Figure 3.20	: Isometric view women orthotics insole (left and right)	46
Figure 3.21	: Top view men orthotics insole (left and right)	46
Figure 3.22	: Front view women orthotics insole	46
Figure 3.23	: Right view women orthotics insole	47
Figure 3.24	: Left view women orthotics insole	47
Figure 3.25	: Split Core and Cavity of Left and Right Male Orthotics Insole	54
Figure 3.26	: Cavity Left and Right of Male Orthotics Insole	54
Figure 3.27	: Core Left and Right of Male Orthotics Insole	55
Figure 3.28	: Split Core and Cavity of Left and Right Female Insole	56
Figure 3.29	: Cavity Left and Right of Female Orthotics Insole xviii	56

Figure 3.30	: Core Left and Right of Female Orthotics Insole	57
Figure 3.31	: 5 axis CNC router	58
Figure 3.32	: Coding system of Orthotics Insole Mould	59
Figure 3.33	: Roughing and Finishing Process of Orthotics Insole	60
Figure 3.34	: Core and Cavity of Orthotics Insole	60
Figure 3.35	: Flat feet of respondent 1(male)	64
Figure 3.36	: Flat feet of respondent 2 (female)	64
Figure 3.37	: Flat feet of respondent 3(male)	65
Figure 3.38	: Flat feet of respondent 4(male)	65
Figure 3.39	: Image of good running posture	67
Figure 3.40	: Image of Tibialis Anterior muscle	69
Figure 3.41	: Image of Peroneus Longus muscle	69
Figure 3.42	: Trigno EMG sensors from Delsys and Trigno Wireless Foundation System	70
Figure 3.43	: Flowchart of overall design and process	72
Figure 4.1	: Image of existing flat feet orthotic insole	75
Figure 4.2	: Image of fabricating flat feet orthotic insole	76
Figure 4.3	: Graph of Left Tibialis Anterior Muscle of Fabricating Orthotic Insole among 4 respondents	83
Figure 4.4	: Graph of Right Tibialis Anterior Muscle of Fabricating Orthotic Insole among 4 respondents	84

Figure 4.5	: Graph of Left Tibialis Anterior Muscle of Existing Orthotic Insole	
	among 4 respondents	85
Figure 4.6	: Graph of Right Tibialis Anterior Muscle of Existing Orthotic Insole among 4 respondents	85
Figure 4.7	: Graph of Left Peroneus Longus Muscle of Fabricating Orthotic Insole among 4 respondents	86
Figure 4.8	: Graph of Left Peroneus Longus Muscle of Fabricating Orthotic Insole among 4 respondents	87
Figure 4.9	: Graph of Left Peroneus Longus Muscle of Fabricating Orthotic Insole among 4 respondents	88
Figure 4.10	: Graph of Right Peroneus Longus Muscle of Existing Orthotic Insole among 4 respondents	88
Figure 4.11	: Average RMS amplitude between 4 respondents on tibialis anterior muscle	89
Figure 4.12	: Average RMS amplitude between 4 respondents on peroneus longus muscle	90
Figure 4.13	: Median frequency of right tibialis anterior muscle on fabricating orthotic insole	92
Figure 4.14	: Median frequency of left tibialis anterior muscle on fabricating orthotic insole	92
Figure 4.15	: Median frequency of right tibialis anterior muscle on the existing orthotic insole	93
Figure 4.16	:Median frequency of left tibialis anterior muscle on the existing orthotic insole	94

Figure 4.17	: Median frequency of right peroneus longus muscle on fabricating orthotic insole	95
Figure 4.18	: Median frequency of peroneus longus muscle on fabricating orthotic insole	95
Figure 4.19	: Median frequency of right peroneus longus muscle on existing orthotic insole	96
Figure 4.20	: Median frequency of left peroneus longus muscle on existing orthotic insole	97
Figure 4.21	: Average median frequency of tibialis anterior muscle for fabricating and existing insole	98
Figure 4.22	:Average median frequency of peroneus longs muscle for fabricating and existing insole	99

LIST OF ABBREVIATIONS

EMG	Electromyography
MLA	Medial longitudinal arch
FFF	Flexible Flat Foot
FFF-STA	Flexible Flat Foot with Short Tendo-Achilles
LFM	Linear Fit Method
RMS	Root Mean Square
CGA	Clinical Gait Analysis
CAD	Computer-Aided - Design
CNC	Computer Numerical Control
MDF	Median Frequency
TD	Time Domain Analysis
MSD	Musculoskeletal disorders
FD	Frequency Domain Analysis

xxii

CHAPTER 1

INTRODUCTION

1.0 Introduction

This chapter will focus on researchers according to the project. Firstly, it will focus on the background and objectives of the project, Then, will proceed with the description of the problem statement for the project and briefing about the overall project. From that, the scope will be elaborate in order to achieve the expected result of this project.

1.1 Research Background

Sports play a great role in human life as it keeps body healthy and active. A healthy body leads to a healthy mind. Most sports activities involve the locomotion of leg muscles. Walking and running are the simplest activities that have been a daily routine for humans being. Walking is when only one foot at a time leaves contact with the ground. According to research, the average human walks a day is about three thousand steps. Running is when both feet are off the ground with each step. Running is a method of terrestrial locomotion allowing humans to move rapidly on foot that is related to the movement of the lower limb. Most of youngest or adults involved in sports as it gives a lot of benefits and can lead to a healthy lifestyle but people with flat feet, they will undergo high risk when doing any sports activities.

Most people have a gap under the arch of their foot when standing. People with flat feet or fallen arches have the low medial longitudinal arch structure of foot either have no arch, or it is very low. People with flat feet will suffer painful or achy feet, especially in the ideas of the arches and heels when walking, running or do any sports activities for long periods due to high forces on foot. Besides that, the person with flat feet also can also have back pain if they do not wear a proper footwear to minimize the forces on their foot.

There are various types of shoes created by inventors nowadays that have trendy and exquisite and design. Shoes is a footwear that becomes indeed necessary accessories for human to protect and comfort feet while doing various activities. Insoles are an interior bottom of a shoe that is placed within the shoe, under the footbed. The insole is an important part of shoes that provide arch support and shock absorption for the heel. The Romans were the originators that encasing shoe to the Mediterranean world. Various type of leather footwear is wore within the Roman Empire. At that moment, the shoe is called 'caliga'(Gill, 2014). The design of caliga is exposing the toes, had a lattice patterned and heavy nail sole. At this age, the shoes represent one status and comfort is not an important matter to be bothered.

During the 1800's, the shoemaker receive complains from the traveller about the pain on foot while travelling (Kaye,2011). Thus, the issue of shoe comfort is highlighted and to be solved by shoe inventor. In 1865, Everett H. Dunbar makes a breakthrough by inventing an arch support orthotic (Hayes,2013). Arch orthotics is a shoe insole that is design like the shape of an arch and it is a function to provide support or cushion to feet and help to curb pain on feet. Everett H. Dunbar inserts a layer of leather between the insole and outsole of the shoe that is shaped like an arch which resembles the shape of