

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SMART PLC: DEVELOPMENT OF AN ELECTRONIC EDUCATIONAL QUIZ KIT TO TEST STUDENT KNOWLEDGE ON CONVERTING OF TIMING DIAGRAM TO LADDER DIAGRAM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Telecommunication) with Honours.

by

NUR SYAHIRAH BINTI MOHD RAZULLEE B071510499 961008-03-5260

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Smart PLC: Development of an Electronic Educational Quiz Kit to Test Student

Knowledge on Converting of Timing Diagram to Ladder Diagram

Sesi Pengajian: 2018

Saya **NUR SYAHIRAH BINTI MOHD RAZULLEE** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4.	**Sila tandakan	(X) Mengandungi maklumat ya	ng berdarjah kesela	matan atau kepen	tingan
	SULIT*	Malaysia sebagaimana yang		•	
		1972.			
П	TERHAD*	Mengandungi maklumat	TERHAD yang	telah ditentukan	oleh
_	TERMINE	organisasi/badan di mana per	nyelidikan dijalankan		
\boxtimes	TIDAK				
	TERHAD				
Yang	benar,		Disahkan oleh peny	elia:	
NUR SYAHIRAH BINTI MOHD RAZULLEE		AMAR FAIZ BIN ZAINAL ABIDIN			
Alamat Tetap:		Cop Rasmi Penyelia			
NO 28, JALAN KAMPUNG PADANG PALAS,					
16450	16450, KETEREH, KELANTAN				
Tarikh: 19 DECEMBER 2018 Tarik			Tarikh:		

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled Smart PLC: Development of an Electronic Educational Quiz Kit to Test Student Knowledge on Converting of Timing Diagram to Ladder Diagramis the results of my own research except as cited in references.

Signature:	

Author: NUR SYAHIRAH BINTI MOHD RAZULLEE

Date: 19th DECEMBER 2018

APPROVAL

This report is submitted to the Faculty of Electric and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunications) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	AMAR FAIZ BIN ZAINAL ABIDIN
Signature:	
Co-supervisor:	IZZAT ZAKWAN BIN MOHD ZABIDI

ABSTRAK

Pengawal Logik yang Boleh Diprogramkan adalah salah satu mata pelajaran wajib yang dipelajari dalam Teknologi Kejuruteraan Elektrik. Salah satu tajuk dalam Pengawal Logic ialah berkaitan dengan menukar Rajah Masa ke Rajah Tangga.

Berdasarkan tinjauan, kebanyakan pelajar mendapati topik ini sukar difahami. Terdapat berdasarkan masa yang disediakan untuk melengkapkan eksperimen di makmal. Tidak juga berdasarkan makmal, terdapat juga berdasarkan kelas dan sesi tutorial. Seperti dalam makmal, pelajar perlu melakukan percubaan mereka dengan diri mereka sendiri. Para pelajar kadang-kadang tidak memahami prosedur di makmal. Oleh itu, mereka terus meminta pensyarah atau bimbingan untuk membantu mereka. Para pelajar juga tidak begitu memahami topik gambarajah tangga dan mereka juga memerlukan tangan ke atas kemahiran terutama di makmal.

Projek ini cuba menangani masalah dengan memperkenalkan kit kuiz elektronik dengan aplikasi android yang memberitahu pengetahuan pelajar mengenai topik yang disebutkan. Menggunakan kit pendidikan ini, para pelajar akan membaca soalan gambarajah masa di app Android dan memasangnya dengan gambarajah tangga yang sepadan pada kit pendidikan. Untuk mengukur keberkesanan kit pendidikan ini, tinjauan yang terdiri daripada 19 soalan dilakukan kepada 53 responden pelajar Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik, FTKEE dan Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, FTKMP, UTeM. Hasilnya menunjukkan bahawa kit pendidikan adalah menarik, mudah digunakan dan melengkapkan pembelajaran dan pengajaran.

ABSTRACT

Programmable Logic Controller is one of the compulsory subject that learned in the Electrical Engineering Technology. One of the topic in Programmable Logic Controller is related to converting the Timing Diagram to the Ladder Diagram.

Based on the survey, most of the students find that this topic is difficult to understand. There are based on the time that are provided to completing the experiments in the lab. Not also based on the lab, there are also based on the class and the tutorial sessions. As in the lab, students needed to do their experiment by their self. The students were sometimes does not understand the procedure in the lab. Due to that, they keep on asking the lecturers or the guidance to help them. The students also does not quite understand on the ladder diagram topic and they also required the hands on skills especially on the lab.

The project attempts to address the problem by introducing an electronic quiz kit with Android application that tell the students' knowledge on the mentioned topic. Using this educational kit, the students will read the timing diagram questions at the android app and assemble it with the corresponding ladder diagram on the educational kit. In order to measure the effectiveness of this educational kit, the survey consist of 19 questions is done to 53 respondent of Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik, FTKEE and Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, FTKMP, UTeM students. The results shows that the educational kit is interesting, easy to used and complement the learning and teaching lessons.

(C) Universiti Teknikal Malaysia Melaka

DEDICATION

This paper is dedicated to my beloved parents, my respectful supervisor my love one, my lecturers and also my friends.

ACKNOWLEDGEMENTS

Firstly, thanks to Almighty Allah for graciously blessed me with the ability to undertake and finally complete this project.

I wish to express my most profound thanks to my supervisor, Amar Faiz Bin Zainal Abidin for his countless hours of reflecting, reading, encouraging, helping me out with the coding for this project and his most of all patience throughout the entire process.

My project will not even be possible done in time without his help. Thank you.

Moreover, thanks to my beloved family particularly to my dearest mother, Hamidah Binti Yaacob for the unrestricted love and encouragement throughout the entire period of my study as well as for praying me to be successful in life. Special thanks to my father, Mohd Razullee Bin Samsudin for always guiding me about the thesis and always give me some advice on how to talk in front of people. I cannot describe how much thankful I am to be their daughter.

Finally, personally thanks to my dearest friends, Azmeen for always help me out with the hardware and coding development in order to produce this project. Not forget to my Mr.A, thanks for always be there and thanks to all my lecturers and friends who had assisted me directly or indirectly towards the consummation of this thesis. Their excitement and willingness to provide feedback made the completion of this project an enjoyable experience.

C Universiti Teknikal Malaysia Melaka

TABLE OF CONTENTS

		PAGE
DECI	LARATION	iii
APPR	ROVAL	iv
ABST	TRAK	v
ABST	TRACT	vi
DEDI	ICATION	vii
ACK	NOWLEDGEMENTS	viii
TABL	LE OF CONTENTS	ix
LIST OF TABLES		xiii
LIST	OF FIGURES	xiv
LIST	OF APPENDICES	XX
LIST	OF SYMBOLS	xxi
LIST	OF ABBREVIATIONS	xxii
CHAI	PTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background of Study	1
1.3	Problem Statement	2
1.4	Objectives of Project	3

1.5	Scope of Work	4
1.6	Project Contribution	5
СНАРТ	TER 2 LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Overview of Educational Kit	7
	2.2.1 An Educational and Research Kit for Activity and Context	
	Recognition from On-Body Sensors	8
	2.2.2 Prototyping a Biped Robot Using an Educational Robotics Kit.	9
	2.2.3 An Effective Educational Tool: Construction Kits for Fun and	
	Meaningful Learning	10
	2.2.4 NEMO Educational Kit on Micro-Optics at the Secondary School	11
	2.2.5 Do It Yourself Educational Kits for Vocational Education and	
	Training	12
	2.2.6 Design and Evaluation of DIY Construction System for Educational	
	Robot Kits	13
	2.2.7 An Educational Kit to Teach and Learn Operational Amplifiers	14
	2.2.8 E-TESTER: The Development of an Electronic Board That Check	
	Commonly Used Arduino-Based Electronic Components and	
	Modules	15
2.3	Programmable Logic Controller (PLC)	16

	2.3.1 D	Development Resistor Educational Kit with Component Tester as a	
	Т	Ceaching and Learning Assistance (ABBM)	17
	2.3.2 D	Development of a Programmable Logic Controller Training Platform	
	fo	or the Industrial Control of Processes	18
	2.3.3 D	Design, fabrication, and testing of a PLC training module using	
	S	iemens S7-300 PLC	19
	2.3.4 A	a remote PLC laboratory design and realization	20
	2.3.5 D	Design and Fabrication of Programmable Logic Controller Kit with	
	N	Multiple Output Module for Teaching and Learning Purposes	21
	2.3.6 D	Development Of Cost Effective PLC Training Kit By Using	
	P	LCDuino	22
	2.3.7 D	Development of a Programmable Logic Controller Training	
	P	Platform for the Industrial Control of Processes	23
	2.3.8 E	-PLC: The Development of a Programmable Logic Controller	
	Т	Trainer that Translate Mnemonic Codes to Hardware Simulation	24
СНАРТ	ER 3 M	ETHODOLOGY	25
3.1	Introduc	ction	25
3.2	Project	Overview	25
3.3	Project	Block Diagram	35
3.4	Project	Layout	36
3.5	Circuit	Layout	39

3.6	PCB Circuit Layout	40
3.7	Program Flowchart	41
3.8	Bill of Material	45
3.9	Project Costing	46
СНАРТ	TER 4 RESULT AND DISCUSSION	47
4.1	Introduction	47
4.2	Reliability Testing	47
	4.2.1 Drop Test	48
	4.2.2 Aging Test	49
	4.2.3 Temperature Test	50
4.3	Functionality Testing	51
	4.3.1 Unit Testing and Integration Testing	51
	4.3.2 BoundaryTesting	52
4.4	Verification Testing	53
4.5	Result Analysis and Survey Questions.	63
СНАРТ	TER 5 CONCLUSION	74
REFER	REFERENCES	
APPENDIX 1: ARDUINO DATASHEET		78
APPEN	DIX 2: SURVEY QUESTION	79

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.0:	A study on the level of understanding of students and	17
	lecturers on resistors	
Table 3.0:	The Gantt Chart of the Project on FYP 1	33
Table 3.1:	The Gantt Chart of the Project on FYP 2	34
Table 3.2:	Design of hardware using SOLIDWORK software	38
Table 3.3:	Estimated cost of the project	46
Table 4.0:	The drop test of the kit on 0.5m and 1m respectively	48
Table 4.1:	The Humidity Test	49
Table 4.2:	The Temperature Test	50
Table 4.3:	Unit Testing	51
Table 4.4:	Integration Testing	51
Table 4.5:	Boundary Testing	52
Table 4.6:	The explanation of the expected result and the actual	53
	result	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.0:	The two common type of the related article and	6
	journal	
Figure 2.1:	The project contribution he hardware development	8
Figure 2.2:	The robot prototype	9
Figure 2.3:	The prototype of the project	10
Figure 2.4:	Outline of the edukit	11
Figure 2.5:	The hardware kit of the project	12
Figure 2.6:	Some portion of the robots that have been made	13
Figure 2.7:	The pack involves a reconfigurable equipment	14
	stage interfaced	
Figure 2.8:	The hardware of the project	15
Figure 2.9:	Counter Circuit for capacitive sensor PLC and its	18
	expansion unit, the data panel for PLC	
	programming and the PLC work station	
Figure 2.10:	Counter Circuit for capacitive sensor	19
Figure 2.11:	Campus Network Model and Topology of the	20
	Remote Laboratory	
Figure 2.12:	Overall view of PLC Kit	21
Figure 2.13:	The hardware development	22
Figure 2.14:	Block diagram of proposed PLC trainer	23

Figure 2.15:	Prototype of the Project	24
Figure 3.0:	Flowchart of the Final Years Project	27
Figure 3.1:	Block Diagram of the hardware	35
Figure 3.2:	Actual Hardware of the Project from side	37
Figure 3:3:	Actual Hardware of the Project from top	37
Figure 3.4:	Hardware design using SOLIDWORK.	37
Figure 3.5:	Hardware design from the front	38
Figure 3.6:	Hardware design from left	38
Figure 3.7:	Hardware design from top	38
Figure 3.8:	Hardware design from trimetric	39
Figure 3.9:	The bottom circuit layout using Proteus	39
Figure 3.10:	Circuit layout for bottom circuit	40
Figure 3.11:	Circuit layout for top circuit	41
Figure 3.12:	(a) Flowchart of the program: First flowchart	42
	(b) Flowchart of the program: Second flowchart	43
	(c) Flowchart of the program: Third flowchart	44
Figure 3.13:	The bill of material	45
Figure 4.1:	Drop Test at 0.5m	48
Figure 4.2:	Drop Test at 1m	48
Figure 4.3:	The aging test started at 1pm	49
Figure 4.4:	The aging test ended at 9pm	49
Figure 4.5:	The temperature test on the hot sunny day started at	50
	9am	

Figure 4.6:	The temperature test ended at 5pm	50
Figure 4.7:	The temperature test on the refrigerator started at	50
	8pm	
Figure 4.8:	the temperature test on the refrigerator ended at	50
	4am	
Figure 4.9:	Overview of the Smart PLC kit	53
Figure 4.10:	The flow of the IoT interface layout with the First	54
	Questions	
Figure 4.11:	The example of question 1 in quiz part	55
Figure 4.12:	Correct ladder diagram connection	55
Figure 4.13:	Output of the correct connection when press "*"	56
Figure 4.14:	Wrong ladder diagram connection	56
Figure 4.15:	Output from the wrong connection	56
Figure 4.16:	The flow of the IoT interface layout for mark, next	57
	questions, final mark and rate us layout	
Figure 4.17:	Actual hardware of Smart PLC kit	53
Figure 4.18:	The main menu of the Bluetooth interface layout on	54
	MIT	
Figure 4.19:	The bluetooth pairing in the phone apps	54
Figure 4.20:	The display of the first questions when the	54
	bluetooth connection is successful	
Figure 4.21:	The first Question	55
Figure 4.22:	Output of the correct connection when press "*"	56
Figure 4.23:	The correct output by user	56

Figure 4.24:	The wrong connection by the user	56
Figure 4.25:	Correct display in Smartphone	57
Figure 4.26:	Correct display on the TFT LCD with mark	57
Figure 4.27:	Wrong display on the Smartphone	57
Figure 4.28:	The explanation of the expected result and the	58
	actual result	
Figure 4.29:	Question 2	58
Figure 4.30:	Connection for Question 2	58
Figure 4.31:	Display mark for Question 2	59
Figure 4.32:	Correct answer for Question 2	59
Figure 4.33:	Question 3	59
Figure 4.34:	Connection for Question 3	60
Figure 4.35:	Mark for the Question 3	60
Figure 4.36:	Correct answer display of Question 3	60
Figure 4.37:	Question 4 display question	60
Figure 4.38:	The mark of Question 4	61
Figure 4.39:	The correct answer display of Question 4	61
Figure 4.40:	Display question of Question 5	61
Figure 4.41:	Connection of the correct connection on Question 5	62
Figure 4.42:	Correct answer display for Question 5	63
Figure 4.43:	Control principle is the interesting subject	63
Figure 4.44:	Educational Kit is related to the topic	63
Figure 4.45:	Educational kit in correct sequence	64
Figure 4.46:	Educational kit are according to student's level	64

Figure 4.47:	Teacher/demonstrator are expert to use the	65	
	educational kit		
Figure 4.48:	Students feels the difficulty to understand with the		
	educational kit		
Figure 4.49:	Educational kit make the learning more effective		
Figure 4.50:	Educational kit save a lot of student's time		
Figure 4.51:	Educational kit provide difficult things in simple	67	
	way to understand		
Figure 4.52:	The educational kit can help student to improve	67	
	their hands-on skills		
Figure 4.53:	Teachers/demonstrator clear the concepts of	68	
	student by using the educational kit		
Figure 4.54:	Educational kit play important role in student's	68	
	learning		
Figure 4.55:	The use of educational kit provides deep knowledge		
Figure 4.56:	Educational kit motivate the students towards	69	
	learning		
Figure 4.57:	Teachers/Demonstrator use educational kit	70	
	according to his needs		
Figure 4.58:	Educational kit make learning long lasting	70	
Figure 4.59:	Students can operate this educational kit without the	71	
	guidance of educator/ teacher		
Figure 4.60:	This educational kit can help lecturer to teach	71	
	student about ladder diagram		

Figure 4.61:	Is there any comments to improve The Smart PLC		
	Quiz Box in the future?		
Figure 4.62:	Display for Question 2	58	
Figure 4.63:	Display for Question 3	59	
Figure 4.64:	Display for Question 4	60	
Figure 4.65:	Display for Question 5	61	

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
Appendix 1	Arduino Datasheet		77
Appendix 2	Survey Question		78

LIST OF SYMBOLS

cm - Centimetre

°C - Celsius

D, **d** - Diameter

F - Force

g - Gram

m - Meter

R - Resistance

V - Voltage

3D - 3 Dimension

 Ω - Ohm

% - Percentage

LIST OF ABBREVIATIONS

AF - And-Forward

AMI - Advance Metering Infrastructure

AMR - Adaptive Multi-Rate

Apps - Application

LCD - Liquid Crystal Display

Lab - Laboratory

LDMicro - Ladder Logic for PIC and AVR

FPWIN - Panasonic Software for PLC

FYP - Final Year Project

GHz - Giga Hertz

HPWC - High Power Wall Charger

HSRC - Half PLC/remote Single – Transfer Channel

I/O - Input Output

IoT - Internet of Things

JSON - JavaScript Object Notation

LAN - Local Area Network

LCD - Liquid Crystal Display

LD - Ladder Diagram

LED - Light Emitting Diode

LTE - Long Term Evolution

LV - Low voltage

MCGS - Machine Checking Gauge software

NFC - Near Field Communication

OA - Ideal Power Assignment

PC - Personal Computer

PLC - Programmable Logic Circuit

RF - Radio Frequecy

SC - Choice Consolidating

xxii

SG - Smart Grid

SGML - Standard Generalized Markup Language

SRC - Single-Hand-Off channel

TFT - Thin Film Transistor

USA - United States of America

UTeM - Universiti Teknikal Malaysia Melaka

VAC - Voltage Alternating Current

VDC - Voltage Direct Current

WIFI - Wireless Fidelity

XML - Extensible Markup Language

CHAPTER 1

INTRODUCTION

1.1 Introduction

This section will clarify the review of the investigation and the motivation behind this project. The part incorporates the background of study, problem statement, objectives of the project that is relied upon to be accomplished, and scope of the work that will be led, and then will be followed by the project contribution.

1.2 Background of Study

Educational kit is a tools that were used in order to make the teaching and learning more exciting and interesting. By using the educational kit, it will help the students to understand the link between the practical work and the theory. Based on Ashaari (1999), educational kit is defined as the tools that used in the teaching which is should not be limited to the devices that are commonly used as a blackboard, pictures and all of the hardware and the software for teaching. Nowadays, can said that the educational kit is raising from time to time. All of people tried to make the students life specifically being easier with the used of the educational kit. There are a lot of importance of the educational kit. Compared to the actual trainer, the cost of the educational kit is usually cheaper. The educational kit also a lot smaller and lightweight compared to the actual trainer.

The programmable logic controller (PLC) has been taught in Universiti Teknikal Malaysia Melaka (UTeM) as in the subject that must be taken in order to grad