

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF PICO ENERGY GENERATION VIA LEACHATE WATER AS FUEL (REACTOR DESIGN AND HARDWARE)

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of the Electrical Engineering Technology (Industrial Power) with Honours.

by

ARIF FIKRI BIN MOHD AMINUDDIN B071510833 931228085385

FACULTY OF ELECTRICAL AND ELECTRONICS ENGINEERING

TECHNOLOGY

2019

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF PICO ENERGY GENERATION VIA LEACHATE WATER AS FUEL (REACTOR DESIGN AND HARDWARE)

Sesi Pengajian: 2019

Saya **ARIF FIKRI BIN MOHD AMINUDDIN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
	SULIT*	kepentingan Malaysia sebagaimana yang termaktub dalam AKTA					
		RAHSIA RAS	MI 1972.				
\square	TERHAD*	Mengandungi	maklumat 7	FERHA	D yang tel	ah ditentukan	oleh
		organisasi/bada	an di mana p	enyelid	likan dijalar	ıkan.	
\boxtimes	TIDAK						
	TERHAD						
Yang	benar,		Disa	Disahkan oleh penyelia:			
			•••••				
ARIF FIKRI BIN MOHD AMINUDDIN			DIN ZUI	ZUL HASRIZAL BIN BOHARI			
Alamat Tetap:			Cop	Rasmi	Penyelia		
No 46	4,jalan bukit 20	0,					
Kampung tersusun bukit jana							
346500 kamunting							
Tarikh	n: 7 /12 /2018		Tari	kh: 7 /1	2 /2018		

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF PICO ENERGY GENERATION VIA LEACHATE WATER AS FUEL (REACTOR DESIGN AND HARDWARE) is the results of my own research except as cited in references.

Signature:	
Author :	ARIF FIKRI BIN MOHD AMINUDDIN
Date:	7 / 12 / 2018

APPROVAL

This report is submitted to the Faculty of Electric and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

> Signature: Supervisor: ZUL HASRIZAL BIN BOHARI

v

ABSTRAK

Permintaan tenaga di dunia ini adalah permintaan yang sangat tinggi dan memicu kecemasan tenaga di seluruh dunia dan pencemaran dunia ini. Penggunaan gas fosil dan minyak kuasa tidak dapat dikekalkan kerana bekalan yang terhad dan melampaui kesan terhadap sistem ekologi. Di Malaysia, sumbangan tenaga utama adalah dari arang batu dan tenaga jenis ini akan melepaskan pelepasan karbon yang akan menghasilkan pencemaran udara. Pada masa kini, penganalisis menumpukan perhatian pada sumber tenaga boleh diperbaharui dan bebas pencemaran yang penting untuk kebolehan semulajadi dan kewangan. Sel bahan bakar mikrob adalah reaktor yang memanfaatkan kuasa mikrob berulang untuk menukar substrat organik terus ke dalam tenaga elektrik. Pada masa kini, penganalisis menumpukan pada pilihan, sumber tenaga boleh diperbaharui dan hijau yang penting untuk kebolehan semulajadi dan kewangan. Sel bahan bakar mikrob membuang mikrob anaerobik kerana lampiran bakteria pada elektrod yang digunakan untuk menghasilkan tenaga elektrik dan merawat air sisa. Terdapat banyak reka bentuk yang dicadangkan oleh penyelidik untuk meningkatkan output kuasa sel bahan bakar mikrob seperti double chamber, single chamber, stacked, upflow dan cassette electrode sel bahan bakar mikrob. Reka bentuk yang berbeza mempunyai kecekapan yang berbeza. Beberapa ujian telah dijalankan untuk menganalisis prestasi sel bahan bakar mikrob.

ABSTRACT

The request of energy on this world is quite high demand are triggering the worldwide energy emergency and the pollution of this world. The using of fossil gas and powers oil are unsustainable because of the limited, exhausting supplies and effect on ecological system. In Malaysia, the major of energy contribution is from coal and this type of energy will release the carbon emission that will produce air pollution. Nowadays, analysts are concentrating on option, renewable and green energy sources which are essential for natural and financial supportability. Microbial fuel cell is a reactor that harnesses the power of respiring microbes to convert organic substrates directly into electrical energy. Nowadays, analysts are concentrating on option, renewable and green energy sources which are essential for natural and financial supportability. The microbial fuel cell removes the anaerobic microbes because attachment of the bacteria to the electrode that used to generate electricity and treat the wastewater. There are many designs were proposed by the researcher to enhance the power output of microbial fuel cell such as two-chamber, single chamber, stacked, upflow and cassette electrode microbial fuel cell. Different design has a different of efficiency. Several tests have been conducted to analysis the performance of the microbial fuel cell.

DEDICATION

To my beloved parents To my kind supervisor To my irreplaceable family To all my friends

Thank you for all their love, sacrifice, and encouragement throughout my life.

viii

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENTS

I would like to extend my appreciation and my sincere thanks to Mr Zul Hasrizal Bin Bohari as a supervisor for his encouragement and support in guiding me in doing final year project. Without a proper guide from my supervisor I cannot perform well to do my final year project as I can get now.

I also would like to thanks to my friends because of the valuable support and suggestions, encouragement and provided me the institutional materials needed to complete this project. The constructive criticisms and comments have helped me to make this report comprehensible.

I sense this opportunity as a big chance in my career development. I will attempt to use gained skills and knowledge in the working environment. It inspired me to be more creative in develop new technology that will help to improve our daily life.

TABLE OF CONTENTS

PACE

TABI	LE OF CONTENTS	X
LIST	OF TABLES	XV
LIST	OF FIGURES	xvi
LIST	OF SYMBOLS	xviii
LIST	OF ABBREVIATIONS	xix
CHAI	PTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Statement of the Purpose	1
1.3	Problem Statement	2
1.4	Scope	2
1.5	Objective	2
1.6	Project Significance	3
1.7	Expected Output	3
1.8	Structure of Report	3
1.9	Chapter Summary	4
CHAI	PTER 2 LITERATURE REVIEW	5
2.1	Introduction x	5

2.2	Microbial Fuel Cell (MFC)	5		
2.3	Design of MFC reactor.	6		
	2.3.1 Single Chambered MFC	7		
	2.3.2 Double Chambered MFC	7		
	2.3.3 Stacked MFC	8		
2.3.4	Up Flow Mode MFC (UMFC)	9		
2.4	Size of Anode and Cathode	11		
2.5	Effect of temperature on the performance of MFC	12		
2.6	Effects of NaCl concentration on anode microbes in microbial fuel cell	13		
2.7	Effect of separator in MFC 14			
2.8	The effects of electrode spacing			
2.9	Cathode Box 1			
2.10	Basic of voltage generation in MFC	15		
	2.10.1 Voltage loss in MFC	16		
	2.10.2 Activation losses	16		
	2.10.3 Bacterial metabolic losses	16		
2.10.4	Mass transport or concentration losses	16		
2.11	Conclusion	17		
		10		
СНАР	PTER 3 METHODOLOGY	18		
3.1	Overview	18		

xi

C Universiti Teknikal Malaysia Melaka

4.3.1	Comparison of the result	31
4.3	Volume of the wastewater	30
4.2	Type of Separator	28
4.1	Overview	28
СНАР	PTER 4 RESULT	28
3.16	Summary	27
3.15	The Hardware Design	26
3.14	The Circuit Design	26
3.13	Design of MFC	25
3.12	Circuit Connection	24
3.11	Temperature Test	24
3.10	Type of Wastewater	24
3.9	Circuit Connection	24
3.8	Comparison of Two Type of Reactor	23
3.7	Size of Electrode	23
3.6	Series Electrode Combination Test	22
3.5	Volume of the Wastewater	22
3.4	Type of Separator	22
3.3	Literature Review	22
3.2	Research	18

4.3.2		Analysis of the result	32
4.4	Series Electro	ode Combination Test	33
4.4.1		Comparison of The Result	34
4.4.2		Analysis of The Result	34
4.5	Size of The H	Electrode	35
4.5.1		Comparison of The Result	36
4.5.2		Analysis of The Result	36
4.6	Comparison	of The Two Type of Reactor	37
4.7	Circuit Conn	ection	39
4.7.1		Comparison of the Result	41
4.7.2		Analysis of the Result	41
4.8	Type of Was	tewater Used	42
4.8.1		Comparison of the Wastewater	42
4.9	Temperature		42
4.10	Result of the	Hardware	43
4.10.1		Voltage of the Cassette electrode	43
4.10.2		Result of the Test	44
4.11	Summary		45
СНАР	PTER 5	CONCLUSION	46
5.1	Conclusion		46

xiii

5.2	Recommendation	47
5.3	Achievement	48

REFERENCES 49

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: Table of	of anode and cathode	12
Table 4.1: Result	of the separator test.	29
Table 4.2: The vo	lume of wastewater that has been tested and the result.	32
Table 4.3: Combi	nation of electrodes and the result.	34
Table 4.4: The siz	e of electrode that has been tested and the result.	36
Table 4.5: The res	sult of the test	38
Table 4.6: CEMF	C result recorded on a table.	41
Table 4.7: Result	of the type of wastewater experiment.	42
Table 4.8: Result	of the temperature test.	43
Table 4.9: Result	of the hardware for each cassette electrode	44
Table 4.10: Resul	t of the hardware in different connection of the CE	44

LIST OF FIGURES

FIGURE	TITLE P	PAGE
Figure 2.1: E	Basic Microbial Fuel Cell reactor design (Santoro et al., 2017)	6
Figure 2.2: T	The basic design of single chambered MFC. (Jumma & Patil, 2016)	7
	A) double chambered MFC. (B) double chambered MFC separated by ma & Patil, 2016)	y salt 8
Figure 2.4: S	tacked MFC schematic design. (Jumma & Patil, 2016)	9
	Ficture A shows the schematic and picture B shows the lab-scale of Up (He et al., 2005)	p- 10
U	The A picture show the flow of the water and B picture is showing the h 10 CEs. (Miyahara et al., 2013)	11
U	Graph of power output of the four systems. (a) For the total system. (b ode area. (c) Based on cathode area. (Ueoka et al., 2016)) 12
U	hows the graph of resistance, voltage, and current of the MFC operati 00th day. (Miyahara et al., 2015)	ng 13
-	ingle chamber MFC schematic showing the diffusion layer and cataly athode. (Cheng et al., 2006)	yst 15
Figure 3.1: F	Yow Chart of the Project	21
Figure 3.2: S	eries electrode combination reactivity	23
Figure 3.3: D	Design of one cassette electrode	25

Figure 3.4: Side view of the reactor and the flow of the water	26
Figure 3.5: The hardware design	27
Figure 4.1: The ceramic and non-woven cloth separator	29
Figure 4.2: Separator line graph	30
Figure 4.3: MFC that used to test the volume of wastewater	31
Figure 4.4: Graph Voltage vs Volume of Wastewater	32
Figure 4.5: The electrode that will be use in this test	33
Figure 4.6: Graph of Voltage vs Combination of Electrode	35
Figure 4.7: Electrode that will be used (A) and the single chamber MFC (B)	36
Figure 4.8: Graph Voltage vs Size of Electrode	37
Figure 4.9: Stacked MFC	38
Figure 4.10: Single chamber MFC	39
Figure 4.11: CEMFC with four CEs	40
Figure 4.12: The CE use in the CEMFC	40
Figure 4.13: Picture of the hardware	43
Figure 4.14: The graph of the hardware result.	45

xvii

LIST OF SYMBOLS

m³	-	Meter cube
m°	—	Meter cube

- ml Mililiter
- **kw** Kilowatt
- **cm** Centre meter
- 1 Length
- A Ampere
- V voltage
- mW miliwatt

xviii

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

MFC	Microbial Fuel Cell	
LED	Light Emitting Diode	
BOD	Biochemical Oxygen Demand	
PEM	Proton Exchange Membrane	
UMFC	Up-Flow Mode Microbial Fuel Cell	
COD	Chemical Oxygen Demands	
PTFE	Polytetrafluoroethylene	
CEMFC	Cassette Electrode Microbial Fuel Cell	
SMFC	Stacked Microbial Fuel Cell	
SCMFC	Single Chamber Microbial Fuel Cell	
DCMFC	Double Chamber Microbial Fuel Cell	

xix

CHAPTER 1

INTRODUCTION

1.1 Background

Microbial Fuel Cells (MFC) is a cell that improve the power of respiring microbes to change organic substrates into electrical energy. MFC is a fuel cell that will convert chemical energy to electrical energy by using oxidation reduction reaction (redox). Microbes will be oxidized to produce electrons. The electrons are transport to a terminal electron acceptor (TEA) that will be reduced by the electrons. TEA's such as oxygen, nitrate, and sulphate will diffuse into the cell and accept electrons and form a new product that leave the cell. However, some bacteria can transfer their electrons outside the cell to the awaiting TEA [1]. These bacteria are the bacteria that can generate power within an MFC system. Electrons and protons are produced through the oxidation of organic matter. The electrones are then delivered from the anode electrode and through wire to the cathode electrode. A catalyst at the cathode can be used to make up this reaction which these reactions will produce carbon dioxide, from the decomposition of the organic matter and small amounts of wastewater at the cathode.

1.2 Statement of the Purpose

The purpose of the project is to develop a microbial fuel cell (MFC) reactor for a wastewater treatment that can produce electricity to power up the waste water plant and treat the waste water and save the environment.

1

1.3 Problem Statement

The energy demands in Malaysia are increasing due to the population growth and technologies that used electric to support daily life performance. The major contribution in generating the electricity is from coal which is nearly half of the electricity generator came from coal. The coal will release carbon emission which will cause air pollution to the environment and furthermore it is not a renewable and green source. So, this country needs a new technology that are renewable and green source that do not harm the environment.

The used of energy in wastewater treatment and the cost for water treatment is high. Besides, the current wastewater treatment plant technology is unable to meet with ever growing water sanitation needs cause by fast industrialization and population growth and it is not suitable for future water treatment. Plus, the current technology is not a green technology innovation which is green technology will give more benefit in present and the future.

1.4 Scope

For the size of this MFC reactor, it will be a $30 \times 10 \times 8$ cm and the max volume of wastewater to be filled in the reactor will be 1500 ml. This reactor will be design to produce an energy output. The wastewater will be using the Sungai Melaka wastewater.

1.5 Objective

- 1. To analysis and select the best design of microbial fuel cell reactor to be implemented on the hardware.
- 2. To analysis and select the properties that enhance the output of the hardware.

2

3. To construct the hardware based on the reactor and properties that selected.

1.6 **Project Significance**

Project significance for this project are the development of microbial fuel cell for wastewater treatment can make a less energy use to treat the water and it is producing electricity. Despite, the development of microbial fuel cell for wastewater treatment can contribute to the solution of the problem on reducing energy and cost of the wastewater plant. This project also can make a new development in wastewater treatment plant and applying a green technology which is suitable to developing country like ours. This project will act as an industry driven project and can be a commercialized product in the future.

1.7 Expected Output

The project aims to reduce the use of energy on the wastewater treatment plant and treat the water by developing a microbial fuel cell. This microbial fuel cell expected to produce enough electricity to power up the water motor pump and the lighting of the plant. Besides, the MFC reactor will be developed to be a changer to a green technology in the wastewater treatment plant.

1.8 Structure of Report

Chapter 1 explain about the introduction of the microbial fuel cell, what is microbial fuel cell? And how the microbial fuel cell will be used as technology to treat wastewater and produce electricity. Besides, it will state the objective, problem statement and expected output when developing the microbial fuel cell. Chapter 2 cover the literature review of the microbial fuel cell. While chapter 3 explain about the flow of the project on how to make the project step by step. Chapter 4 cover the experiment of microbial fuel cell reactor and will explain in detail about the part of design that will enhance the power output from the reactor design.

1.9 Chapter Summary

This chapter cover the introduction of microbial fuel cell for wastewater treatment. The development of microbial fuel cell for wastewater treatment can give benefit in promoting the green technology in our country. Besides, it will make the cost for wastewater treatment reduced. Chapter two covers the literature review and project methodology which gives an overview of microbial fuel cell, design of microbial fuel cell, part that will enhance the energy output, water treatment and current systems.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter contains the literature review about topics relevant to the development of a microbial fuel cell (MFC) for wastewater treatment. It presents an overview of microbial fuel cell and their interaction with electricity and wastewater. Besides, the using of microbial fuel cell in wastewater treatment will be a significant technology in our country.

2.2 Microbial Fuel Cell (MFC)

Microbial fuel cell is device that exploit the living microbes to produce electricity and treat the water. The MFC is a technology regarding a direct bioelectrochemical reactor realizes a conversion of chemical energy in microorganism to electricity, treats the organism as the substrate and utilizes the microbial redox reaction to generate electricity directly. (Xia, Zhang, Pedrycz, Zhu, & Guo, 2018). The original idea in using microbes to generate electricity was find in 1911 when Galvani was experimenting with frog legs and further concept and research were explored since, such as Cohen's 35-unit setup in 1931, Karube et al. catalyst research in the 60's and more research has been conducts in 80s-90s. (Santoro, Arbizzani, Erable, & Ieropoulos, 2017)