

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

DESIGN AND DEVELOPMENT OF ARDUINO DATA GLASSES

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Power Industry) with Honours.

by

MUHAMMAD AZMI BIN ISMAON B071510444 960702145617

Degree Of Electrical Engineering Technology (Power Industry)

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN AND DEVELOPMENT OF ARDUINO DATA GLASSES

Sesi Pengajian: 2019

Saya **MUHAMMAD AZMI BIN ISMAON** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD*

TERHAD

Yang benar,

Disahkan oleh penyelia:

MUHAMMAD AZMI BIN ISMAON

MUHAMMAD FAREQ BIN IBRAHIM

Cop Rasmi Penyelia

Alamat Tetap:

502, B4, Seksyen 4, Wangsa Maju, Kuala

Lumpur.

Tarikh:

Tarikh:

DECLARATION

I hereby, declared this report entitled DESIGN AND DEVELOPMENT OF ARDUINO DATA GLASSES is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Power Industry) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	MUHAMMAD FAREQ BIN IBRAHIM

ABSTRAK

Bekerja di sekitar kawasan voltan tinggi adalah satu tugas yang sangat berisiko yang boleh melibatkan kematian akibat kemalangan. Salah satu sebab bagi kemalangan itu berlaku kerana kecuaian pekerja itu sendiri, sebagai contoh, seorang pekerja perlu memeriksa sama ada fius masih lagi berfungsi atau tidak ketika keadaan voltan masih berjalan dan dia secara tidak sengaja menyambung wayar fasa ke neutral menggunakan multimeter. Hasilnya akan mendapat litar pintas dan satu kilauan arka besar akan mengenai seluruh tubuhnya. Untuk mengelakkan situasi ini berlaku, projek ini akan memberi tumpuan bagaimana untuk fokus kepada kerja tangan sambil melihat data penting seperti paparan voltan pada multimeter. Idea untuk menyelesaikan masalah ini adalah dengan merekabentuk dan membangunkan peranti yang dapat memaparkan keluaran bacaan digital di depan mata pengguna. Setelah melakukan penyelidikan, peranti yang paling sesuai untuk keadaan ini adalah kacamata pintar. Oleh itu, projek ini akan merekabentuk dan membangunkan kacamata pintar dengan mengkaji dan mendapatkan idea yang berguna dari penyelidik terdahulu yang telah juga membuat kacamata pintar. Akhirnya, projek ini akan dibina semudah dan semurah yang mungkin supaya ia sesuai untuk digunapakai bagi setiap peringkat dalam komuniti sekarang.

ABSTRACT

Work around high voltage areas is a very risky job that involves accidental death. One of the reasons for the accident occurred because of the negligence of the worker himself, for example, an employee need to check whether the fuse is broken or not while the voltage is applied and he accidentally connect the phase wire to the neutral using a multimeter. The result will get a short circuit and one big an arc flash in his entire body. To prevent this situation occurred, this project will be focused on how to keep focus on hands-on job when viewing important data such as voltage value on the multimeter. The idea for solving this problem is to design and develop devices that can display output digital on front of user's eyes. After doing some research, the most suitable device for this situation is smart glasses. Therefore, this project will designing and developing of the smart glass by studying and earn a good idea from the previous researcher that also making the smart glasses. Lastly, this project will builds as simple and cheap as possible for suitable to every rank of community to earn it.

DEDICATION

To my beloved parents Mr. Ismaon Bin Osman and Mrs. Norzaiton Binti Yusof for their support and pray. A full appreciation to my supervisor Muhammad Fareq Bin Ibrahim for advising and helping through this project.

ACKNOWLEDGEMENTS

Alhamdulillah thanks to Allah S.W.T the Most Merciful, and all praises to Allah for his blessing in completing this project. I would also like to show appreciation to my supervisor Muhammad Fareq Bin Ibrahim for his support, consultation and professional cooperation. Most thanks to all other University Technical Malaysia Malacca panels and staff members that were help assist for consultation, comments and opinion to completed the project. I enjoin thankfulness to my family for supporting to finish this project. Also, my great thanks to all my friends for encouragement and support in this project.

TABLE OF CONTENTS

ТАВ	LE OF CONTENTS	PAGE x
LIST	Γ OF TABLES	xiv
LIST	r of figures	XV
LIST	F OF APPENDICES	xviii
LIST	FOF SYMBOLS	xix
LIST	FOF ABBREVIATIONS	XX
СНА	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background	1
1.3	Problem Statement	4
1.4	Objective	6
1.5	Scope	6
1.6	Project Framework	7
1.7	Conclusion	8
СНА	APTER 2 LITERATURE REVIEW	9
2.1	Introduction	9
2.2	High Voltage	9

2.3	Head N	Nounted Display (HMD)	10
	2.3.1	Optical Head Mounted Display (OHMD)	11
2.4	Smart (Glasses	12
	2.4.1	Working field	13
	2.4.2	Education	14
2.5	Lens		14
	2.5.1	Converging lens	15
	2.5.2	Fresnel lens	17
2.6	Reflect	ion	18
	2.6.1	Reflection of light	18
2.7	Micro	LED	19
2.8	Lithiun	n polymer battery	20
2.9	Blueto	oth V4.0 HM-11 BLE (Bluetooth Low Energy) Module	21
	2.9.1	Specification	22
2.10	SolidW	Vorks	22
	2.10.1	Modelling technology	23
2.11	Blueto	oth Multimeter	24
2.12	Arduino	Pro Mini	25
	2.12.1	Power	26
	2.12.2	Connectors	26
	2.12.3	Technical Specifications	27
	2.12.4	Memory	28
	2.12.5	Input and Output	28
	2.12.6	Communication	29

	2.12.7	Automatic (Software) Reset	29
CHA	PTER 3	METHODOLOGY	31
3.1	Introdu	ction	31
3.2	Flow ch	nart	32
3.3	Design	and Development	34
3.4	Equipm	ent and Material	37
CHA	PTER 4	RESULTS AND DISCUSSION	43
4.1	Introdu	ction	43
4.2	Optical	Design	43
	4.2.1	Appropriate Distance	44
4.3	Circuit	Design and Program Development	46
	4.3.1	Arduino Pro Micro	46
	4.3.2	Bluetooth module	47
		4.3.2.1 Step to Connect to The Bluetooth multimeter	49
	4.3.3	Micro OLED	50
	4.3.4	Charger Circuit for Battery LiPo	52
4.4	Casing	Design	54
4.5	End Pro	oduct of Data Glasses	57
CHA	PTER 5	CONCLUSION	58
5.1	Introdu	ction	58

REFE	REFERENCES 6	
5.4	Suggestions for Future Work	59
5.3	Achievement of Research Objectives	59
5.2	Summary of Research	58

APPENDIX

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Specification Bluetooth Module	22
Table 2.2:	Specification of Arduino Pro Mini	27
Table 2.3:	Input and Output of Arduino	28
Table 4.1:	Result of converging lenses	44
Table 4.2:	Connection Bluetooth to Arduino Pro Micro	48
Table 4.3:	Connection Micro OLED to Arduino Pro Micro	50

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	User Viewing Field of Smart Glasses	2
Figure 1.2:	Workplace and Non-Workplace Electrical Accidents	4
Figure 1.3:	Electrical accidents – primary electrical source	5
Figure 1.4:	Example moment in electrical flashover	6
Figure 1.5:	Prototype of Arduino Data Glasses	7
Figure 2.1:	Examples of Injuries from Electric Accident	9
Figure 2.2:	Example of Head Mounted Display	10
Figure 2.3:	Example of Optical Head Mounted Display	11
Figure 2.4:	User Wearing Moverio	12
Figure 2.5:	Example of Smart Glasses in Working Field	13
Figure 2.6:	Example of Smart Glasses in Education	14
Figure 2.7:	Different type of Lens	14
Figure 2.8:	Example of Converging lens	15
Figure 2.9:	Theory of converging lens formula	16
Figure 2.10:	Examples of Fresnel lens Use in Daily Life	17
Figure 2.11:	Type of Reflection	18
Figure 2.12:	Theory of Light Reflection	19

Figure 2.13:	Example of Micro LED	19
Figure 2.14:	Example of Lithium polymer battery	20
Figure 2.15:	Example of Bluetooth module	21
Figure 2.16:	Example of drawing using SolidWorks	22
Figure 2.17:	Bluetooth Multimeter	24
Figure 2.18:	Arduino Pro Mini	25
Figure 2.19:	FTDI Cable	25
Figure 2.20:	ATmega328	29
Figure 3.1:	Field Diagram of this project	31
Figure 3.2:	Flowchart of project	33
Figure 3.3:	Schematic Diagram of Data Glasses	34
Figure 3.4:	Coding program of Arduino Pro Micro	35
Figure 3.5:	Theory of converging lens equation formula	36
Figure 3.6:	Prototype of Casing Data Glasses	37
Figure 3.7:	Arduino Pro Micro	37
Figure 3.8:	Bluetooth V4.0 HM-11 BLE	38
Figure 3.9:	Micro OLED	38
Figure 3.10:	Mini USB Charger	39
Figure 3.11:	Lithium Polymer Battery	39
Figure 3.12:	Mini Slide Switch	40
Figure 3.13:	Bluetooth Multimeter xvi	40

Figure 3.14:	Jumper Wire	41
Figure 3.15:	Small Mirror	41
Figure 3.16:	Safety Glasses	42
Figure 3.17:	Small Fresnel Lenses	42
Figure 4.1:	Distance of the Optical Design	45
Figure 4.2:	Result of the Optical Design	45
Figure 4.3:	Pin Arduino Pro Micro	47
Figure 4.4:	HM-11 Pin	48
Figure 4.5:	Connection Bluetooth to Arduino Pro Micro	49
Figure 4.6:	Connection Micro OLED to Arduino Pro Micro	51
Figure 4.7:	Result of Connection between Micro OLED to Bluetooth	52
Figure 4.8:	Charger Circuit Connection	53
Figure 4.9:	Full Circuit Complete	53
Figure 4.10:	Bottom of Electronic Casing	54
Figure 4.11:	Top of Electronic Casing	54
Figure 4.12:	Top of Optical Casing	55
Figure 4.13:	Bottom of Optical Casing	55
Figure 4.14:	Glass Reflector Holder	56
Figure 4.15:	Final result of 3D print design	56
Figure 4.16:	Final Result of the Project	57
Figure 4.17:	Output Display Success	57

LIST OF APPENDICES

APPENDIX TITLE		PAGE
APPENDIX A:	Blinking Coding for Arduino Pro Micro	61
APPENDIX B:	Coding AT Mode for Hm-11 Bluetooth Module	63
APPENDIX C:	Arduino Code Print at Serial Monitor	64
APPENDIX D:	Final Coding for this project	67

xviii

LIST OF SYMBOLS

IT - Information Technology
Θr - Angle of Reflection
Θi - Angle of Incident
I Distance of Virtual Image
O - Object Distance
F - Focal Length

xix

LIST OF ABBREVIATIONS

HMD	Head Mounted Display
OHMD	Optical Head Mounted Display
TMD	Transmissive Mirror Device
AR	Augmented Reality
BLE	Bluetooth Low Energy
OLED	Organic Light-Emitting Diode
LED	Light-Emitting Diode
LiPo	Lithium-Ion Polymer Battery
SPI	Serial Peripheral Interface
CAD	Computer-Aided Design
CAE	Computer-Aided Engineering

XX

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter represent idea to develop a Smart Glasses. It also includes the background, problem statement, objectives, and project scope. A problem statement was summarized to propose a solution for the problem. The solution is stated as the objectives of developing this project. Hence, the scope is covered the functionalities provided by this project.

1.2 Background

Due to technological development, various portable terminals and computers are nowadays part of business as usual. Everyone obviously has cell phone which is most likely a smart phone, but diverse portable terminals and relevant applications are nowadays basic equipment for mobile workers. Wearable technology represents the next stage of development that are running smoothly with hands and eyes free.

It is very important to have a wearable technology which the devices are small and the design allows them to be either integrated to clothing or otherwise easily portable. With the latest technology, it is easy to provide variable accurate and additional information for a mobile worker without disturbing the actual work with some devices or workflow interruptions.

In order to develop a device that can display data at front of user's eyes, Smart Glasses has been introduced. The display may be projected or reflected on the lens of glasses or it can be a separate component brought to the eye sight. Most importantly, user can observe the environment without distractions when he is not in need of the information provided by the Smart Glasses.

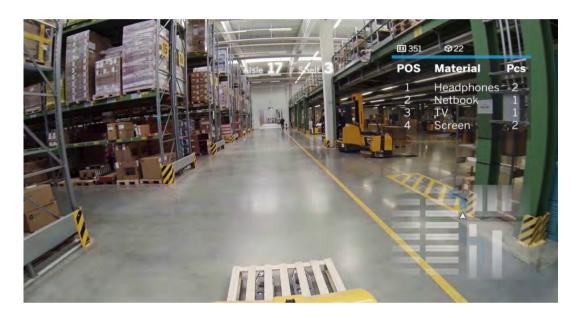


Figure 1.1: User Viewing Field of Smart Glasses

Smart Glasses are usually called augmented reality, means by displaying digital information in the real world. For watching video or moving pictures or to virtual reality, there are dissimilarity when doing comparison on display techniques. Data about an objective in sight, for example, an item on hands, data about view of a person and even recognition of human face are mostly provided by Smart Glass systems.

User can communicate with the system, for example with voice, signs or finger sweeps. It is important that managing the system is easy and practical and should be suited for the task and user. The device ought to fit or suit perfectly so that you don't have to think about using it or paying attention to it while not in use. In business use, the device also needs to be compatible with other IT infrastructure.

There was an increase in development on Smart Glasses. Because of its features such as user sharing their viewpoint with other people with remote location or users may look into digital displayed without using hand, Smart Glasses are hoped-for be used on field of worked. An example of work system, that use Smart Glasses is when workers are primarily using the Smart Glasses to avoid whatever failure from looking at the digital display while focusing on their hands work.

Among of it is Graphical User Interface (GUI) design based on Smart Glasses for assist pilots on harbour manoeuvres that has been discussed by (Marie-Christin Ostendorp, 2015) which provide pilots for approach any information while continuing to look outside the window and thus continue to focus on their hands work. The result was the pilot has ability to see and solve a problem quickly with help of information from interface.

Besides that, Tsunami Evacuation Drill (TED) system has been developed by (Junya Kawaia, 2015) in order to solve the problem of participants were not committed or interested to the Evacuation training. The objective was success which is the participants able to moving quickly while view text and map material provided by the system.

Furthermore, Smart Glasses has not been establish to be used at context of complex ICU said by (Charlotte Romarea, 2017). Research about views of Smart Glasses in intensive care was carried out for determine the possible intensive care position where Smart Glasses can be used for improve patient safety. Unfortunately, the result was said human presence is more needed than Smart Glasses in intensive care.

There are some various type of Smart Glasses has been designs. Depending at their functional condition, each form have their own advantages and disadvantages. Therefore, in order for users to comfortably wear the Smart Glasses and see the digital output clearly, the choice of Smart Glasses designation is very crucial. A good display of Smart Glasses depending on the combination of the optical system with the Smart Glassed itself, which can only be achieved by selecting the right type of lens to use in optical system.

1.3 Problem Statement

Work around high voltage areas is a very risky job that involves accidental death. For example, Electrical Incident Safety Report 2016-2017 of Western Australia shows that there were 135 electrical accidents which occurred over the 10 years and also electrical accidents have increased in 2016-2017 compared to the previous year (Bowron, 2017).

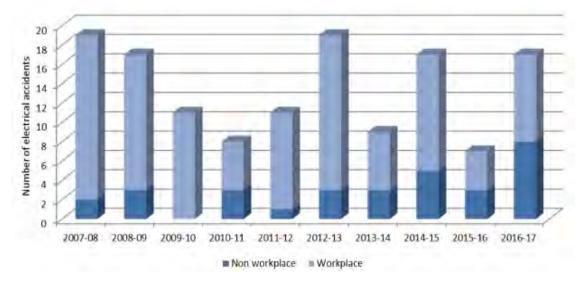


Figure 1.2: Workplace and Non-Workplace Electrical Accidents