

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF MULTILEVEL CAR PARKING SYSTEM BASED ON CAR SIZES

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

by

NOR AMALIN BT ABIDIN B071510517 961101-03-5660

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

2	Tajuk: DEVELOPMENT OF MULTILEVEL CAR PARKING SYSTEM BASED ON CAR SIZES		
Sesi Peng	gajian: 2019		
Saya Nor Amalin Bt Abidin mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:			
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (X) 			
	SULIT*	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.	
	ΓERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.	
	ГIDAK ГERHAD		

Yang benar,	Disahkan oleh penyelia:
Nor Amalin Bt Abidin	Ts. Ahmad Muzaffar Bin Abdul Kadir
Alamat Tetap:	
No. 32 Jalan Jejarum 2B,	
Seksyen BS2, Bukit Sentosa,	
48300, Rawang,	
Selangor	Cop Rasmi Penyelia
Tarikh:	Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF MULTILEVEL CAR PARKING SYSTEM BASED ON CAR SIZES is the results of my own research except as cited in references.

Signature:	
Author:	Nor Amalin Bt Abidin
Date:	

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

Signature:	
· ·	•••••

Supervisor: Ts. Ahmad Muzaffar Bin Abdul Kadir

ABSTRAK

Sistem letak kereta adalah sistem yang digunakan di kawasan bandar sebagai salah satu kaedah untuk mengatasi masalah sistem sistem parkir yang tidak sistematik. Di samping itu, sistem parkir yang disediakan adalah tidak selesa untuk semua pengguna kenderaan kerana terdapat pelbagai saiz kenderaan yang digunakan setiap hari. Untuk menyediakan sistem parkir yang lebih baik, pembangunan sistem letak kereta bertingkat yang berdasarkan saiz kereta dilaksanakan. Idea utama projek ini adalah untuk mengoptimumkan ruang yang disediakan untuk kenderaan di sistem letak kereta dengan membezakan tempat letak kereta dari saiz tempat letak kereta. Ketinggian dan lebar kenderaan itu akan dibezakan di bahagian awal platform kemasukan sistem letak kereta dengan menggunakan Sensor Inframerah. Arduino Mega digunakan sebagai mikrokontroler projek ini namun sistem programnya dikawal oleh perisian komputer iaitu perisian LabVIEW. Di samping itu, projek ini juga melaksanakan sistem pembayaran parkir mengikut saiz kenderaan. Saiz kereta yang lebih besar, sederhana dan kecil akan diletakkan pada tahap yang berbeza dari sistem parkir. Pembayaran sistem letak kereta akan berbeza mengikut tahap tempat letak kereta. Projek ini juga bertujuan untuk memantau aliran masuk dan keluar kenderaan di tempat letak kereta untuk pemeriksaan ketersediaan ruang.

ABSTRACT

Car parking system is a system that are used in urban area as one of the medium to overcome the problem regarding the unsystematic parking system. In addition, the parking system that is available is not comfortable for all vehicle user as there are various sizes of vehicle used every day. In order to provide a better used of parking system, a development of multilevel of car parking system based on car sizes are implemented. The main idea of the project is to optimize the space provided for vehicle in car parking system by differentiate the car parking from the size of the parking. The height and width of the vehicle are diagnose at the entry platform of the car parking system using Infrared Sensor. The Arduino Mega are used as the microcontroller of the project but the program of the project will be controlled by the program in the LabVIEW software. Then, this project also implemented a smart parking fare system that follow the vehicle size. The bigger, medium and small size of the car will parks on the different level of the parking system. The payment of the car parking system will be differs according to the level of the parking. This project also aims to monitor the inflow and outflow of vehicle in the car park for space availability check.

DEDICATION

To my beloved parents,

Abidin Bin Che Ramli, my father

Ainon Bt Osman, my mother

My supervisor

Ts. Ahmad Muzaffar Bin Abdul Kadir

To all lectures

And not forgetting to all my dear friends

Without the

ACKNOWLEDGEMENTS

Praise to Allah I able to complete the final year project with successful and smooth sailing. A very grateful of help from my supervisor Ts. Ahmad Muzaffar Bin Abdul Kadir that guide me all the way in the process of this final year project. Without the guidance from my supervisor, the process in completing this project will not be as smooth as this.

Then, a very thankful for my friends that helps in the process of making this project. The idea and improvement from the discussion with my friends really helps in my project. Lastly, a very thankful and grateful for my parents that give moral support along the process of making this project. Their support really helps me in ensuring the process in making this project much better.

TABLE OF CONTENTS

		PAGE	C
TA	BLE OF CONTENTS	2	K
LIS	T OF TABLES	xiv	V
LIS	T OF FIGURES	XV	V
LIS	T OF APPENDICES	xix	K
	T OF SYMBOLS	XX	K
LIS	T OF ABBREVIATIONS	XX	i
СНА	PTER 1 INTRODUCTI	I ON 1	1
1.1	Introduction	1	1
1.2	Background	1	1
1.3	Problem statement	2	2
1.4	Objective	3	3
1.5	Scope	3	3
1.6	Project Outline	3	3
1.7	Conclusion	2	4
СНА	PTER 2 LITERATURE	E REVIEW 5	5
2.1	Introduction	5	5
2.2	Types of Parking Available	5	5
2.2.	1 On street parking		5

	2.2.1.1 Angular Parking	6
	2.2.1.2 Parallel Parking	7
	2.2.1.3 Perpendicular Parking	8
2.2.2	Off street parking	8
2.3 I	Different Size of Cars	9
2.3.1	Small car	9
2.3.2	Medium Size Car	11
2.3.3	SUV	13
2.3.4	MPV	14
2.4	Microcontroller	17
2.4.1	Arduino Uno	17
2.4.2	Arduino Mega	19
2.4.3	Related Previous Journal	19
	2.4.3.1 Arduino Based Smart Parking System	20
2.5	Sensor	21
2.5.1	Ultrasonic Sensor	21
2.5.2	Infrared sensor	22
2.6	Software	23
2.6.1	LabVIEW Software	23
2.7	Conclusion	24
СНАІ	PTER 3 METHODOLOGY	25
3.1	Introduction	25

3.2	Project Work Flow	26
3.3	System structure	28
3.4	Flowchart of the project	30
3.5	Flowchart of the parking availability	32
3.6	Flowchart of the whole project	34
3.7	Software	36
3.7.1	LabVIEW software	37
	3.7.1.1 To connect Arduino and LabVIEW	37
3.7.2	Arduino IDE	38
3.7.3	SOLIDWORK	39
3.8	Hardware	40
3.8.1	Arduino Mega	40
3.9	Sensor Testing	41
3.9.1	Infrared Sensor	42
3.10	Conclusion	44
СНАР	PTER 4 RESULTS AND DISCUSSION	45
4.1	Introduction	45
4.2	The differences between the sensors used in parking system	45
4.3	The difference between standard size parking and project size parking	49
4.4	The Price of Car Parking	54

4.5	Fees of the project for the car parking based on different size of car	57
4.6	The time taken for the sensor to determine the size of car	58
4.7	LabVIEW Interfacing with Arduino	61
4.8	Front Panel of the LabVIEW system	62
4.8.1	Identifying the car sizes	62
4.8.2	The Availability of the Parking	66
4.8.3	The Exit process of the System	71
4.9	Block Diagram of the LabVIEW	72
4.10	Hardware and the model of the Project	76
4.11	Conclusion	78
CHAP	TER 5 CONCLUSION	79
5.1	Introduction	79
5.2	Summary Of Research	79
5.3	Achievement of Project Objective	80
5.4	Problems encountered during the process	81
5.5	Improvement for future work	82
DEE-	DENGE	83
KEFE	EFERENCES	
APPE	NDIX	85

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	The measurement of small car	10
Table 2.2:	The measurement of sedan car	12
Table 2.3:	The measurement of bigger car (SUV, MPV and etc.)	15
Table 4.1:	The tested result between Ultrasonic and Infrared	47
	Sensor	
Table 4.2:	The standard size of parking and the project size of	53
	parking	
Table 4.3:	The parking fees in different places in city (Malaysia	54
	Parking Rate Directory, 2018)	
Table 4.4:	The average fees of parking system in different place	55
	in a city	
Table 4.5:	The average fees of car parking based on working	56
	hours	
Table 4.6:	The fees of car parking based on size of car parking	57
Table 4.7:	The time taken for determining the different size of	58
	car (s)	
Table 4.8:	The average time taken for the system to identify the	57
	size of car (s)	

LIST OF FIGURES

FIGURI	E TITLE	PAGE
Figure 2. 1:	On street parking called parallel parking	8
Figure 2. 2:	Off street parking in assigned parking lot	ç
Figure 2. 3:	The example of small car	11
Figure 2. 4:	The small car measurement	13
Figure 2. 5:	The example of Medium size car	13
Figure 2. 6:	The measurement of medium size car	15
Figure 2. 7:	The example of SUV	15
Figure 2. 8:	The example of MPV	16
Figure 2. 9:	The measurement of SUV and MPV car	18
Figure 2. 10:	The top view of Arduino Uno	20
Figure 2. 11:	An ATmega328 Pin Mapping	20
Figure 2. 12:	The top view of Arduino Mega.	21
Figure 2. 13:	The top view of ultrasonic sensor	24
Figure 2. 14:	The top and bottom view of Infrared Sensor sensor	25
Figure 2. 15:	The top and bottom view of Infrared Sensor sensor	25
Figure 2. 16:	The LabVIEW software	26

Figure 3. 1:	Project Work Flow	26
Figure 3. 2:	Project System Block Diagram	29
Figure 3. 3:	Flowchart of the project	30
Figure 3. 4:	Flowchart of the parking availability	32
Figure 3. 5:	Flowchart of the whole project	34
Figure 3. 6:	LabVIEW software	37
Figure 3. 7:	Arduino IDE software	39
Figure 3. 8:	Solidwork Software	39
Figure 3. 9:	An AT mega 2560 pin mapping (Sram and Cycles, 2014)	41
Figure 3. 10:	Hardware testing on infrared sensor	42
Figure 3. 11:	When there is an obstacle detected	42
Figure 4. 1:	The ultrasonic sensor is being tested	46
Figure 4. 2:	The infrared sensor is being tested	46
Figure 4. 3: 7	The standard size of car parking (Code of Practice on Vehicle Parking	_
	Provision in Development, 2011)	47
Figure 4. 4:	The standard size parking Platform	47
Figure 4. 5:	the size of the smaller size parking platform of the prototype project	49
Figure 4. 6:	The size of the medium size parking platform of the prototype project	49
Figure 4. 7:	The size of the bigger size parking platform of the prototype project	522
Figure 4. 8:	Graph of time taken and the size of car	529

Figure 4. 9:	LabVIEW Interface with the Arduino	61
Figure 4. 10:	The normal state of entrance part of the system	622
Figure 4. 11: 7	The entrance part of the car parking system when the sensor X1 is detected	633
Figure 4. 12: '	The entrance of the car parking system when sensor X1 and X2 is detected	633
Figure 4. 13: 7	The entrance of the car parking system when sensor X1, X2, Y1 is detected	644
Figure 4. 14:	The gate of the entrance is open	655
Figure 4. 15:	The initial state of the car parking system slot	666
Figure 4. 16: \	When there is one car occupies one parking slot in a smaller size car parking	677
Figure 4. 17: V	When there are two cars occupy two parking slot in smaller size car parking	677
Figure 4. 18: V	When there are three cars occupy three parking slots in smaller size car parking	r 688
Figure 4. 19:	When there are three cats occupy three parking slots in medium size caparking	ar 699
Figure 4. 20: V	When there are three cars occupy three parking slots in bigger size car parking	70
Figure 4. 21:	The idle state of the exit system	71
Figure 4. 22:	The sensor detecting a car to exit from the parking system	711
Figure 4. 23:	The block diagram of the car determining sizes platform (entrance)	72

Figure 4. 24:	The block diagram to determine the availability of the parking slot	733
Figure 4. 25	The block diagram of opening and close gate	755
Figure 4. 26:	The overall hardware system of the project	776
Figure 4. 27:	The project model	777
Figure 4. 28:	The top view of differentiating platform	777
Figure 4. 29:	The multilevel car parking system	778

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Gantt Chart	85
Appendix 2	Datasheet Servo Motor	86
Appendix 3	Datasheet Arduino Mega 2560	87
Appendix 4	LabVIEW interface with Arduino	89

LIST OF SYMBOLS

mm - Millimetres

LIST OF ABBREVIATIONS

CCTV - Close Circuit Television

ICSP - In Serial Circuit Programming

IDE - Integrated Development Environment

IR - Infrared Sensor

LCD - Liquid Crystal Display

MHz - Megahertz

MPV - Multi-purpose Vehicle

PWM - Pulse Width Modulation

SUV - Sport Utility Vehicle

UR - Ultrasonic Sensor

USB - Universal Serial Bus

VIs - Virtual Instruments

USB - Universal Serial Bus

CHAPTER 1

INTRODUCTION

1.1 Introduction

The main purpose of this chapter is to introduce what is the title of the research which is Development of Multilevel of Car Parking System Based on Car Sizes, background information, objective and scope of these study.

1.2 Background

Transportation is the important things in human works and activities. It is an irreplaceable segment of the economy and assumes a noteworthy part in spatial relations between areas. Transportation is one of the communication medium for economic activities and to bond a different region, and society. (Rodrigue et. al). The important of transportation has increase the number of vehicle that is been sold by every vehicle company as they compete for their company sale. Due to the increase in the number of cars nowadays has cause a problem for placing their vehicle safely in public area. The ineffective organisation of parking space in public area also one of the reason that leads to these problem.

Parking space is one of the things that need to be alerted before planning a journey. An organised parking, and adequate parking for the user and good planning parking space is one of the key of the successful of an urban area. A problem regarding insufficient parking will leads to the frustration to the user of the parking space that eventually makes the user park the vehicle not according to the standard that causes a difficulties for the other user. These problem of parking may interrupt other user to use the same facilities. According to Wang and He, (2011) to overcome the problem regarding insufficient parking for vehicle, a system called smart parking system is implement to solve and satisfy the user. A smart parking system between parking service provider that interact with user have been developed.

1.3 Problem statement

Nowadays, the number of vehicle on the road are increasing due to the demands in transportation for human daily needs. These leads to the higher demands in public parking to park the vehicle at a time. A lot of time are wasted to find an empty and suitable parking lot especially during peak hour of the day. Usually the peak hour in the morning from 7.00 am to 8.30 am and peak hour during lunch hour from 12.30 am to 2.00 pm. This will leads to unproductive day for the workers and student especially if their day start with hardship of finding the suitable parking. The parking that are left empty usually are in a small size of lot parking. The bigger car size user usually have these kind of problem in finding the suitable lot of parking that is comfortable and safe to park their vehicle. The parking lot that are provided usually are just fit for their size and it may leads to bump with the car that is parked next to it. But, when a bigger size car user parks their car in the

parking lot given, it also cause a problem for a smaller size car as their view of road has been blocked by the bigger car.

1.4 Objective

- 1. To optimize the space provided for vehicle in car parking system by differentiating car sizes
- 2. To implement a smart parking fare system that follow the vehicle size.
- 3. To monitor the inflow and outflow of vehicle in the car park for space availability check.

1.5 Scope

This study will be focused on the optimizing space of car parking system in the city area. The main target of the project is aiming toward the parking system of the city workers. This project is implement in order to provide a suitable space of parking for each size of vehicle with fair price of the parking. The space of the parking system will be used to its maximum as to achieve the objective of the project.

1.6 Project Outline

Phase 1

In this phase, the problem statement, background and objective will be listed. The review on the project main idea which is different size of car, type of parking available and the previous journal will be the done in this phase. The comparison of the hardware to be used in the project is going to be analyse in this phase.