CLICK OR TAP HERE TO ENTER TEXT.

CLICK OR TAP HERE TO ENTER TEXT.

Click or tap here to enter text.

Click or tap here to enter text.

FACULTY OF ENGINEERING TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SIMULATION OF MULTILEVEL INVERTER WITH MODIFIED CARRIER FOR POWER QUALITY MITIGATION APPLICATION

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

by

NUR ZAKIRAH BINTI RAMLI

B071510536

961122-03-5096

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: simulation of multilevel inverter WITH MODIFIED CARRIER for power quality mitigation APPLICATION

Sesi Pengajian: 2019

Saya **Nur Zakirah Binti Ramli** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau
kepentingan Malaysia sebagaimana yang termaktub dalam AKTA
RAHSIA RASMI 1972.

TERHAD* Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

 \boxtimes

Yang benar,

TIDAK

TERHAD

Disahkan oleh penyelia:

111

Nur Zakirah Binti Ramli	Muhamad Faizal Bin Yaakub
Alamat Tetap:	Cop Rasmi Penyelia
No 53 Jalan 35, Selayang Baru	
68100 Batu Caves	
Selangor	

Tarikh:

••

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini berlu dikelaskan sebadai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled simulation of multilevel inverter WITH MODIFIED CARRIER for power quality mitigation APPLICATION is the results of my own research except as cited in references.

Signature:	
Author :	Nur Zakirah Binti Ramli
Date:	2/12/2018

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Ekectrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

Signature:

Supervisor : Muhamad Faizal Bin Yaakub

Signature:

Co-supervisor: Muhammad Aiman Bin Jidin

ABSTRACT

Power system consists of generation, transmission, and distribution. Inverter is one of the crucial components in renewable energy to change a Direct Current (DC) supply to an Alternating Current (AC) supply. There are many problems with the application of inverters such as insufficient power, low-quality sine wave generation and harmonics issues. Thus, to encounter harmonics problem is to increase the performance of inverter. Triangular carrier which is the normally supplied as the carrier is changed to a modified carrier to overcome harmonics issue. Studies will be done to design a three phase cascaded H-bridge and flying capacitor multilevel inverter with modified carrier and the performance of the inverter will be observed by monitoring the THD and voltage output. The output THD of MPDPWM is 1% higher than PDPWM but are still under 5% which is acceptable under IEEE standard.

DEDICATION

To my beloved parents who build me up every single time I shattered apart, education community who hold the hopes of the future.

viii

ACKNOWLEDGEMENTS

First and foremost, I have to thank my research supervisor Encik Muhamad Faizal Bin Yaakub. Without his assistance and dedicated involvement in every step throughout the process, this paper would have never been accomplished. I would like to thank you very much for your support and understanding over these past 10 months.

Getting through my dissertation required more than academic support, and I have many, many people to thank for listening to and, at times, having to tolerate me in accomplishing this thesis. I cannot begin to express my gratitude and appreciation for their friendship for unwavering personal and professional support during the time I spent at the University.

Most importantly, there is no words that can express my gratitude to my parents, who offered their encouragement through phone calls every week – despite my own limited devotion to correspondence. With their own brand of humor, Ramli Bin Kasim and Hasamat Binti Mahmood has been kind and supportive to me over the last several years. I am forever grateful for every help I received. This dissertation stands as a testament to your unconditional love and encouragement.

None of this could have happened without the help from Allah for all the health, time, ideas and even the ability to think. Alhamdulillah.

TABLE OF CONTENTS

PA	GE
----	----

TABI	LE OF CONTENTS	X
LIST	OF FIGURES	xii
LIST	OF TABLE	xvii
LIST	OF APPENDICES	xviii
LIST	OF SYMBOLS	xix
LIST	OF ABBREVIATIONS	XX
CHAI	PTER 1 INTRODUCTION	1
1.0	Background	1
1.1	Problem Statement	2
1.2	Objectives	3
1.3	Scope	4
CHAI	PTER 2 LITERATURE REVIEW	5
2.0	Introduction	5
2.1	Converter	5
2.2	Multilevel Inverter	7
2.2.1	Topologies	8
	2.2.1.1 Diode Clamped Inverter	8
	2.2.1.2 Flying Capacitor Multilevel Inverter	9
	2.2.1.3 Cascaded Voltage H-Bridge Multilevel Inverter	11
2.3	Control Techniques	12
2.4	Improvement in control techniques	15
2.5	Improvement in topology and control technique	16
2.6	Conclusion	18
CHAI	PTER 3 METHODOLOGY	19
3.0	Introduction	19
3.1	Project Outline	19
3.2	Project Flowchart	20

Simulation	22
Cascaded H-Bridge Simulation	25
Flying Capacitor Simulation	29
Control Scheme	32
Fast Fourier Transform	35
TER 4 RESULTS AND DISCUSSIONS	36
Introduction	36
Phase Disposition Pulse Width Modulation of Cascaded H-Bridge	36
Modified Pulse Width Modulation of Cascaded H-Bridge	44
Third Harmonic Injection Pulse Width Modulation for Cascaded H-Bridge	49
Modified Third Harmonic Injection Pulse Width Modulation for Cascaded H- 54	
Phase Disposition Pulse Width Modulation of Flying Capacitor	59
Modified Pulse Width Modulation of Flying Capacitor	67
Third Harmonic Injection Pulse Width Modulation for Flying Capacitor	72
Modified Third Harmonic Injection Pulse Width Modulation for Flying Capaci 77	itor
Comparison between different PWM on Cascaded H-Bridge	82
TER 5 CONCLUSION	89
Introduction	89
Project epitome	89
Research objective epitome	90
Methodology epitome	90
Result epitome	91
Recommendations	91
	Simulation Cascaded H-Bridge Simulation Flying Capacitor Simulation Control Scheme Fast Fourier Transform TER 4 RESULTS AND DISCUSSIONS Introduction Phase Disposition Pulse Width Modulation of Cascaded H-Bridge Modified Pulse Width Modulation of Cascaded H-Bridge Third Harmonic Injection Pulse Width Modulation for Cascaded H-Bridge Modified Third Harmonic Injection Pulse Width Modulation of Flying Capacitor Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Modified Pulse Width Modulation of Flying Capacitor Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Modified Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Modified Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Modified Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Modified Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Modified Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Modified Third Harmonic Injection Pulse Width Modulation for Flying Capacitor Modified Third Harmonic Injection Pulse Width Modulation for Flying Capacitor TER 5 CONCLUSION Introduction Project epitome Research objective epitome Methodology epitome Result epitome Result epitome Recommendations

REFERENCES 92

APPENDIX	95
----------	----

LIST OF FIGURES

FIGURE	TITLE	PAGE
DECLARATION.		v
APPROVAL		vi
ABSTRACT		vii
DEDICATION		viii
ACKNOWLEDGI	EMENTS	ix
Figure 1.1: Overhe	eated Neutral Bus Bar Caused by Harmonics Current	t3
Figure 2.1:Choppe	er Basic Block Diagram	6
Figure 2.2: Rectif	ier Basic Block Diagram	6
Figure 2.3: Inverte	r Basic Block Diagram	6
Figure 2.4: Topolo	gy Source Based Classification	7
Figure 2.5: Single	Phase 3-Level Diode Clamped Inverter	9
Figure 2.6: Three I	Phase Three-Level Flying Capacitor Multilevel Inve	rter 10
Figure 2.7: Single	Phase 7 Level Cascaded Inverter	
Figure 2.8: Multile	evel Inverter Control Techniques	
Figure 2.9: PD-PW	M Signal (Rathore, S. et al., 2015)	
Figure 2.10: POD-	PWM Signal (Rathore, S. et al., 2015)	
Figure 2.11: APOI	D-SPWM Signal (Rathore, S. et al., 2015)	

Figure 2.12: Hybrid Five-Level Inverter With Two Dc Source	17
Figure 2.13: Schematic 19-level Inverter (J Venkataramanaiah, et al., 2017)	18
Figure 3.1: Project Flow Chart	21
Figure 3.2: Matlab Logo	22
Figure 3.2: Switching Input	24
Figure 3.3: Three Phase Cascaded H-Bridge	25
Figure 3.6: Low pass filter for Flying Capacitor Topology	30
Figure 3.7: Matlab Simulation Flow Chart	31
Figure 3.8: Triangular and U-shaped carrier	32
Figure 3.9: Comparator for Carrier And Reference Waveform	33
Figure 3.10: Triangular Carrier and Reference Supplied to the Inverter	33
Figure 3.11:U-shapedCarrier and Reference Supplied to the Inverter	34
Figure 3.13: PWM generated from U-shaped Carrier	35
Figure 4.1: PD PWM Input for CHB	36
Figure 4.2: Phase One CHB Output with PDPWM Switching	37
Figure 4.3: FFT Analysis of 1 st phase CHB with PD PWM	39
Figure 4.4: Phase Two CHB Output with PDPWM Switching	40
Figure 4.5: FFT Analysis of 2 nd phase CHB with PD PWM	40
Figure 4.6: Phase Three CHB Output with PDPWM Switching	41
Figure 4.7: FFT Analysis of 3 rd phase CHB with PD PWM	42
Figure 4.8: Filtered three phase AC voltage from CHB with PD PWM	43

Figure 4.9: MPD PWM Input for CHB	44
Figure 4.10: Phase One CHB Output with MPD PWM Switching	45
Figure 4.11: FFT Analysis of 1 st phase CHB with MPD PWM	45
Figure 4.12: Phase Two CHB Output with MPD PWM Switching	46
Figure 4.13: FFT Analysis of 2 nd phase CHB with MPD PWM	46
Figure 4.14: Phase Three CHB Output with MPD PWM Switching	47
Figure 4.15: Analysis of 3 rd phase CHB with MPD PWM	47
Figure 4.16: Filtered three phase AC voltage from CHB with MPD PWM	48
Figure 4.17: THIPWM Input for CHB	49
Figure 4.18: Phase One CHB Output with THIPWM Switching	50
Figure 4.19: FFT Analysis of 1 st phase CHB with THIPWM	50
Figure 4.20: Phase Two CHB Output with THIPWM	51
Figure 4.21: FFT Analysis of 2nd phase CHB with THIPWM	51
Figure 4.22: Phase Three CHB Output with THIPWM Switching	52
Figure 4.23: Analysis of 3 rd phase CHB with THIPWM	52
Figure 4.24: Filtered three phase AC voltage from CHB with THIPWM	53
Figure 4.25: MTHIPWM Input for CHB	54
Figure 4.26: Phase One CHB Output with MTHIPWM Switching	55
Figure 4.27: FFT Analysis of 1 st phase CHB with MTHIPWM	55
Figure 4.28: Phase Two CHB Output with MTHIPWM Switching	56
Figure 4.29: FFT Analysis of 2 nd phase CHB with MTHIPWM	56

Figure 4.30: Phase Three CHB Output with MTHIPWM Switching	57
Figure 4.31: Analysis of 3 rd phase CHB with MTHIPWM	
Figure 4.32: Filtered three phase AC voltage from CHB with MTHIPWM	
Figure 4.33: PD PWM Input for FC	59
Figure 4.34: Phase One FC Output with PDPWM Switching	60
Figure 4.35: FFT Analysis of 1 st phase FC with PD PWM	
Figure 4.36: Phase Two FC Output with PDPWM Switching	
Figure 4.37:FFT Analysis of 2 nd phase FC with PD PWM	64
Figure 4.38: Phase Three CHB Output with PDPWM Switching	64
Figure 4.39: FFT Analysis of 3 rd phase CHB with PD PWM	65
Figure 4.40: Filtered three phase AC voltage from CHB with PD PWM	66
Figure 4.41: MPD PWM Input for FC	67
Figure 4.42: Phase One FC Output with MPD PWM Switching	68
Figure 4.43: FFT Analysis of 1 st phase FC with MPD PWM	68
Figure 4.44: Phase Two FC Output with MPD PWM Switching	69
Figure 4.45: FFT Analysis of 2 nd phase FC with MPD PWM	69
Figure 4.46: Phase Three FC Output with MPD PWM Switching	70
Figure 4.47: Analysis of 3 rd phase CHB with MPD PWM	70
Figure 4.48: Filtered three phase AC voltage from FC with MPD PWM	71
Figure 4.49: THIPWM Input for FC	72
Figure 4.50: Phase One CHB Output with THIPWM Switching	

Figure 4.51: FFT Analysis of 1 st phase FC with THIPWM	. 73
Figure 4.52: Phase Two FC Output with THIPWM	. 74
Figure 4.53: FFT Analysis of 2nd phase FC with THIPWM	. 74
Figure 4.54: Phase Three FC Output with THIPWM Switching	. 75
Figure 4.55: Analysis of 3 rd phase FC with THIPWM	. 75
Figure 4.56: Filtered three phase AC voltage from FC with THIPWM	. 76
Figure 4.57: MTHIPWM Input for FC	. 77
Figure 4.58: Phase One FC Output with MTHIPWM Switching	. 78
Figure 4.59: FFT Analysis of 1 st phase FC with MTHIPWM	. 78
Figure 4.60: Phase Two FC Output with MTHIPWM Switching	. 79
Figure 4.61: FFT Analysis of 2 nd phase FC with MTHIPWM	. 79
Figure 4.62: Phase Three FC Output with MTHIPWM Switching	. 80
Figure 4.63: Analysis of 3 rd phase FC with MTHIPWM	. 80
Figure 4.64: Filtered three phase AC voltage from FC with MTHIPWM	. 81
Figure 4.65: SPWM pulse	. 83
Figure 4.66: MPD PWM pulse	. 83
Figure 4.67: Duty Cycle (https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png)) 84
Figure 4.68: Single phase CHB	. 85
Figure 4.69: THIPWM	. 86
Figure 4.70: MTHIPWM	. 86

LIST OF TABLE

TABLE	TITLE	PAGE
Table 3.1	IGBT switching for each Cascaded H-Bridge Module	27
Table 3.2	Parameters of Cascaded H-Bridge filter	29
Table 3.3	Switching Sequences for Flying Capacitor Topology	30
Table 3.4	Parameters of Flying Capacitor filter	31
Table 4.1	Colour indicator for carriers and references for Cascaded H-Bridge topology.	38
Table 4.2	Output summary of CHB with PDPWM	44
Table 4.3	Output summary of CHB with MPDPWM	49
Table 4.4	Output summary of CHB with THIPWM	54
Table 4.5	Output summary of CHB with THIPWM	59
Table 4.6	Colour indicator for carriers and references of Flying Capacitor topology	60
Table 4.7	Output summary of FC with PDPWM	67
Table 4.8	Output summary of FC with MPDPWM	73
Table 4.9	Output summary of FC with THIPWM	79
Table 4.10	Output summary of FC with MTHIPWM	84
Table 4.11	Summarization of CHB with variation of switching scheme.	85
Table 4.12	Summarization of FC with variation of switching scheme.	91

xvii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	

Appendix 1	Coding PD PWM, MPD	PWM, THI PWM,	MTHIPWM	98
------------	--------------------	---------------	---------	----

xviii

LIST OF SYMBOLS

A	-	Ampere
F	-	Farad
Н	-	Henry
S	-	Seconds
V	-	Volt
Ω	-	Ohm

xix

LIST OF ABBREVIATIONS

СНВ	Cascaded H-Bridge
FC	Flying Capacitor
PD	Phase Disposition
MPD	Modified Phase Disposition
THI	Third Harmonic Injection
MTHI	Modified Third Harmonic Injection
THD	Total Harmonic Distortion

CHAPTER 1

INTRODUCTION

1.0 Background

Inverter denotes a class power conversion circuit that operates from DC voltage source or a DC current source and converts it into AC voltage or AC current. The inverter is the reverse of the AC to DC converter (Rodriguez, J. et al., 2002). Multilevel inverter was developed during the mid of 1970s were the first multilevel inverter is referring to 2-level inverters and was developed into various levels and topologies (Colak, I. et al., 2011). Multilevel inverter has various topologies and control techniques where each of them has their own advantages and disadvantages. Examples of multilevel inverter topologies are Neutral-point-clamped (Diode clamped), Flying capacitor (Capacitor clamped), and Cascaded H-bridge. Multiple combinations of these basic topologies are available which produced hybrid topologies that have been inverted to increase the performance of inverter.

Space vector control, selective harmonics elimination, space vector PWM, and Sinusoidal PWM are the basic control techniques based of fundamental and high switching frequency (Chattopadhyay, S. K. and Chakraborty, C., 2014). There are numerous new topologies proposed with new techniques as methods to increase the performance of inverter (Shehu, G. S. et al., 2016). Multilevel inverter consists of a few levels as it varies from the DC sources and numbers of switches. As the number of levels increased, a better output waveform will be produced due to the decreasing size of sampling which then produces a smoother output waveform. As the output waveform is smoother, the harmonics are reduced (Rajesh, B. and Manjesh, 2016).

A cascaded multilevel inverter consists of a few single phase H-bridge inverter units. An inverter's level using cascaded H-bridge topology consists of (levels-1)/2 number of cascaded H-bridge cells, where each of them has its' own DC source (Kalla, U.K, et al., 2016). Increasing the steps in output voltage value will decrease the THD that improves the power quality and produces a smoother output waveform by using a certain algorithm that is compatible with the cascaded H-bridge topology (Paikray, A. and Mohanty, B., 2014).

1.1 Problem Statement

Inverters can be used in various applications for renewable energy circuit design or as a motor driver. But there are problems arise as the inverter is implemented such as insufficient power supplied, low-quality sine wave generate and harmonics issues. High harmonics will cause high temperature of the device used as the figure below (Blackledge, J. et al., 2012).

Above thermal images show an overheated neutral bus bar caused by third order, zero sequence harmonic currents.

Figure 1.1: Overheated Neutral Bus Bar Caused by Harmonics Current (Blackledge, J. et al., 2012)

Normally, industrial and commercial institute use four wire for three-phase distribution system where the neutral conductor sizes are smaller than the live wires. Nevertheless, the triplen harmonics which is multiples of third order harmonics current from every phase total up in the neutral conductor with the increment of non-linear loads (Blackledge, J. et al., 2012). Thus harmonics problems should be encountered to reduce heating of equipment resulting longer equipment lifespan.

Harmonics is one of the crucial issues that would be encountered when improving the inverters' performance. Harmonics issue can be catered from the carrier injected into the inverter. Instead of supplying a normal triangular carrier, a modified carrier can be injected into the inverter to reduce harmonics occurrence in the output.

1.2 Objectives

The development of multilevel inverter with Modified Carrier PWM comes with 3 objectives as stated below:

• Construct and simulate a model of three phase cascaded H-bridge multilevel inverter with Modified Carriers Sinusoidal Pulse Width Modulation (MPD PWM)

- Construct and simulate a model of three phase Flying Capacitor multilevel inverter with Modified Carriers Sinusoidal Pulse Width Modulation (MPD PWM)
- Analyse the maximum voltage and total harmonic distortion (THD) of three phase cascaded H-bridge multilevel inverter with Flying Capacitor multilevel inverter.

1.3 Scope

This study focused on a three phase multilevel inverter. Aside of using triangular wave carrier, a U-shaped modified carrier sinusoidal pulse width modulation were also used and a sinusoidal wave was referred. The inverter used using cascaded H-bridge and flying capacitor topology due to the circuit's design simplicity which provides a focused study on the inverter's performance. Two different topologies were used to see the trend based on the control scheme applied. Each module consists of individual DC supply connected to a three phase full bridge inverter. A detailed study on the voltage output and total harmonics distortion will be done to monitor the inverter's performance. Then, a comparison of the inverter's performance were made between the application of Phase Disposition Pulse Width Modulation (PDPWM) and the application of Modified Carrier Phase Width Modulation (MPD PWM). Third Harmonics Injection Pulse Width Modulation (MTHIPWM) were compared. All simulation and theoretical analysis were conducted by using the MATLAB software.