

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IOT BASED BLOOD PRESSURE MONITOR USING RASPBERRY PI

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering Technology (Telecommunications) with Honours.

by

SITI NUR ILMANI BINTI MOHD YUSOFF B071510916 940115-10-5620

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: IoT BASED BLOOD PRESSURE MONITOR USING RASPBERRY PI

Sesi Pengajian: 2019

Saya SITI NUR ILMANI BINTI MOHD YUSOFF mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

	TERHAD*	Mengandungi maklun organisasi/badan di m	mat TERHAD yang telah ditentukan olel ana penyelidikan dijalankan.	h
\bowtie	TIDAK			
<u> </u>	TERHAD			
Yang	benar,		Disahkan oleh penyelia:	
SITIN	NUR ILMANI	BINTI MOHD		
YUSC	OFF		PN. NORLEZAH BINTI HASHIM	
Alama	at Tetap:		Cop Rasmi Penyelia	
No.13	, Jalan Titib 28	3/8,		
Tamai	n Alam Megah	2		
40400	, Shah Alam,			
Selang	gor Darul Ehsa	n		
Tarikł	n: 07 DISEMB	ER 2018	Tarikh:	

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled IoT BASED BLOOD PRESSURE MONITOR USING RASPBERRY PI is the results of my own research except as cited in references.

Signature:	
Author:	SITI NUR ILMANI BINTI MOHD
	YUSOFF
Date:	07 DECEMBER 2018

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	PN. NORLEZAH BINTI HASHIM

Signature:	
Co-supervisor:	PN. SITI HALMA BINTI JOHARI

v

ABSTRAK

Projek ini adalah berkenaan satu sistem untuk memantau tekanan darah menggunakan sistem 'IoT' melalui penggunaan Raspberry Pi. Alat memantau tekanan darah digunakan sebagai alat utama dalam pembikinan projek ini dan Raspberry Pi digunakan sebagai 'gateway' untuk pelaksanaan sistem IoT untuk melihat data. Aplikasi IoT yang digunakan dalam projek ini adalah aplikasi Gmail dan Telegram yang merupakan aplikasi normal yang biasa digunakan oleh semua orang. Fungsi untuk kedua-dua aplikasi adalah untuk melihat parameter tekanan darah seseorang dengan menggunakan rangkaian internet. Pada dasarnya, sistem ini dapat memindahkan data dari mesin tekanan darah normal melalui rangkaian dengan menggunakan kabel bersiri USB TTL yang dilampirkan kepada Raspberry Pi sebagai 'gateway' dan dapat melihat data tekanan darah ke aplikasi Telegram dan Gmail di mana-mana dan di mana sahaja oleh orang lain selagi terdapat sambungan internet. Sistem sebelumnya, yang digunakan pada dasarnya menggunakan tekanan darah normal dan hanya seseorang yang berada di dekat pesakit dapat melihat parameter tekanan darah. Sistem ini dapat membantu masalah yang dihadapi oleh pesakit dan doktor untuk memantau tekanan darah sekiranya pesakit mempunyai kesulitan untuk pergi ke hospital. Oleh itu, projek ini dapat menyelesaikan beberapa masalah yang dihadapi sekarang.

ABSTRACT

The project is about an IoT based Blood Pressure Monitor using Raspberry Pi. The blood pressure is mainly to be used as the main devices and Raspberry Pi is used as a gateway for the implementation of the IoT system to view the data. The IoT applications-used in this project is Gmail and Telegram applications which are the most command applications that used by a human. The function for both applications is to view the person blood pressure parameter by using network interfaces. The previous system was basically a normal blood pressure detector and only a person who is near the patient can view the blood pressure parameter. This system is able to help the problem faced by the patient and the doctor to monitor the patient blood pressure remotely especially when the patient has difficulty to go to the hospital. Result taken from experiment setup shows that the system able to transfer the data from the normal blood pressure through the network by using USB TTL serial cable which is attached to Raspberry Pi as a gateway and are able to view the blood pressure data to the Telegram and Gmail application everywhere and anywhere by the other person as long as there is an internet connection. This project has been successfully designed, implemented and tested. Thus, this project is able to be settling some of the problems faced nowadays.

DEDICATION

To my beloved father and mother Thank you for your morally and physically support

viii

ACKNOWLEDGEMENTS

Alhamdulillah, thanks to Allah S.W.T the Final Year Project (FYP) is complete. I hereby would like to take this opportunity to express my sincere gratitude to several individuals who are involving and supporting me generously in helping and assisting me throughout completing this Project Thesis (PSM) which is compulsory to all Universiti Teknikal Malaysia Melaka (UTeM) students in order to complete our degree.

First and foremost, I wish to express my deepest gratitude and thanks to my project supervisor, Puan Norlezah binti Hashim for her undivided support morally and physically, insightful comments, invaluable suggestions, beneficial information, sensible advice and unceasing ideas which proved to help me constantly as to finish my Final Year Project (FYP).

I also would like to thank the panels, whose give me a comment during my presentation. I also wish to take this opportunity to express my deepest gratitude to my family unwavering support and encouragement is my source of strength, and friends for their patients, understanding and also for the undivided support that they had given me throughout the completion of my project.

Last but not least, I also would like to thank all those helping and supporting me during my Final Year Project (FYP).

ix

TABLE OF CONTENTS

тарі		PAGE
IABL	LE OF CONTENT	X
LIST	OF TABLES	XV
LIST	OF FIGURES	xvi
LIST	OF APPENDIX	xix
LIST	OF SYMBOLS	XX
LIST	OF ABBREVIATIONS	xxi
CHAI	PTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	1
1.3	Objective Project	2
1.4	Scope of Work	3
1.5	Expected Result	3
1.6	Cost Involved in this Project	3
1.7	Thesis Organisation	4
1.8	Summary	5
CHAI	PIEK 2 LIIEKAIUKE KEVIEW	6
2.1	Introduction	6

Х

2.2	Past Related Work	6	5
2.3	IoT in Healthcare	10)
	2.3.1 Using WiFi Module in IoT	12	2
2.4	Technology Available in Healthcare	13	3
	2.4.1 Telemedicine	13	3
	2.4.2 Automobile Healthcare	14	Ļ
	2.4.3 Medical Informatics	17	7
	2.4.4 E-Health	18	3
	2.4.5 Medical Imaging	19)
2.5	Blood Pressure		
	2.5.1 Definition of Blood Pressure	20)
	2.5.2 Arterial Pressure	21	l
	2.5.3 Blood Pressure Reading	21	l
2.6	Design of Blood Pressure Monitor	22	2
2.7	Blood Pressure Monitor Operating Principle	23	3
2.8	Blood Pressure Measurement Method		
	2.8.1 Auscultatory Method	25	5
	2.8.2 Oscillometric Method	25	5
	2.8.3 Infrasound and Ultrasound Method	26	5
	2.8.4 Tonometry Method	27	7
	2.8.5 Ambulatory Blood Pressure Monitoring xi	Technique 27	7

	2.8.6	Pulse Dynamic Technique	28
	2.8.7	Plethysmography Technique	28
	2.8.8	Finger Cuff Technique	28
2.9	Micro	controller	29
	2.9.1	Types of Microcontroller	29
2.10	Raspb	erry Pi	32
2.11	Advar	tages of Raspberry Pi over Arduino	33
	2.11.1	Powerfulness	33
	2.11.2	Networking	34
	2.11.3	Don't Need Profound Electronics Knowledge	34
2.12	Summ	ary	35
			26
CHAI	TERS	METHODOLOGY	30
3.1	Introd	uction	36
3.2	Softwa	are Component	36
	3.2.1	Hterm Software	37
	3.2.2	Angry IP Scanner	38
	3.2.3	PuTTy	39
	3.2.4	VNC Viewer	40
	3.2.5	Raspbian Operating System (OS)	41

	3.2.7	Juice SSH Application	41
	3.2.8	Telegram Application	42
	3.2.9	Gmail Application	42
3.3	Hardv	vare Component	42
	3.3.1	Blood Pressure Devices	43
	3.3.2	USB TTL Serial Cable	44
	3.3.3	Raspberry Pi	44
	3.3.4	USB Wireless Adapter	45
	3.3.5	Ethernet Cable	46
	3.3.6	Hardware Limitation	46
3.4	Types	of Sensor	47
	3.4.1	Pressure Sensor (US 9111-006-U)	47
3.5	Projec	t Overview	48
	3.5.1	Block Diagram of the System	49
	3.5.2	Report Flowchart	50
	3.5.3	Project Flowchart	51
	3.5.4	System Flowchart	52
3.6	Exper	iment Testbed Setup	53
	3.6.1	To test accurancy for blood pressure measurement	53
	3.6.2	To test time taken for data received by using wifi adapter	56
	3.6.3	To test time taken for data received by using ethernet cable xiii	57

СНА	PTER 4	RESULT AND DISCUSSION	59
4.1	Introd	uction	59
4.2	Accur	acy of Blood Pressure	59
4.3	Comparison Time Delay to View IoT Results at Telegram and Gmail		
	Appli	cations by Using Wifi Adapter and Ethernet Cable	60
	4.3.1	Time delay to view data by using Wifi Adapter	61
	4.3.2	Time delay to view data by using Ethernet Cable	62
	4.3.3	Comparison reveived message duration in seconds(s) by using	
		wifi adapter and ethernet cable	63
4.4	Summ	ary	64
CHA	PTER (5 CONCLUSION AND FUTURE WORK	65
5.1	Concl	usion	65
5.2	Recor	nmendation for Future Work	65
REFI	ERENC	ES 66	

58

APPENDIX 69

xiv

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1.1:	Cost involved in the project	3
Table 2.1:	Blood Pressure Reading	22
Table 4.1:	Blood pressure level according to category	59

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1:	Blood Pressure Reading with ZigBees System	8
Figure 2.2:	Wireless Blood Pressure Monitor Diagram	9
Figure 2.3:	Remote Monitoring Patient	12
Figure 2.4:	Combination of the system to build In-car wellness monitoring	17
Figure 2.5:	Biomedical Information	18
Figure 2.6:	Block Diagram for Digital Blood Pressure Monitor	24
Figure 2.7:	Measurement determination using oscillometric technique	26
Figure 2.8:	Atmel Atmega by Arduino	30
Figure 2.9:	PSoC (Programmable Single-On-Chip)	30
Figure 2.10:	Motorola 68HC11	31
Figure 2.11:	Microchip PIC	32
Figure 2.12:	Arduino VS Raspberry Pi	33
Figure 3.1:	H-Term Software	37
Figure 3.2:	Angry IP Address software	38
Figure 3.3:	PuTTy Software	39
Figure 3.4:	VNC viewer software	40

Figure 3.5:	Blood pressure devices	43
Figure 3.6:	USB TTL Serial Cable	44
Figure 3.7:	Raspberry Pi model B+ V1.2	44
Figure 3.8:	Raspberry Pi GPIO Pin	45
Figure 3.9:	USB 2.0 Wireless 802.11N	45
Figure 3.10:	Ethernet Cable	46
Figure 3.11:	Pressure Sensor	47
Figure 3.12:	System Block Diagram	49
Figure 3.13:	Report Flowchart	50
Figure 3.14:	Project Flowchart	51
Figure 3.15:	System Flowchart	52
Figure 3.16:	Sitting position with different hand movement	53
Figure 3.17:	Results received when in sittin position with hand straight	54
Figure 3.18:	Standing postion with different hand movement	54
Figure 3.19:	Results received in standing position with hand down	55
Figure 3.20:	Lying position with different hand movement	55
Figure 3.21:	Results receive when in lying position with hands up	56
Figure 3.22:	Test time delay blood pressure using wifi adapter	57
Figure 3.23:	Test time delay blood pressure using ethernet cable	57
Figure 4.1:	Graph for accuracy of blood pressure based	60

on the person position

Figure 4.2:	Graph for received message duration in seconds	61
	by using wifi adapter	
Figure 4.3:	Graph for received message duration in seconds by using ethernet cable	62
Figure 4.4:	Graph for Comparion received message duration in seconds(s) by using wifi adapter and ethernet cable	63

xviii

LIST OF APPENDIX

NO	TITLE	PAGE
A	Coding to receive results	69
В	CK-101 Blood Pressure	71
С	Raspberry Pi Model B+	73

xix

LIST OF SYMBOLS

mmHg - Millimeters of mercury, the height of a column of mercury

s - Second

LIST OF ABBREVIATIONS

API	Application Programming Interface	
CPU	Central Processing Unit	
ECG	Electrocardiogram	
EEPROM	Electrically Erasable Programmable Read-Only Memory	
GPIO	General-Purpose Input/Output	
GSM	Global System for Mobile Communication	
GUI	Graphical User Interface	
LAN	Local Area Network	
MEMS	Microelectromechanical Systems	
SMS	Short Service Message	
I/O	Input and Ouput	
ΙοΤ	Internet of Things	
IP	Internet Protocol	
IVHM	Integrated Vehicle Monitoring	
LED	Light Emmitting Diode	
MRI	Magnetic Resonance Imaging	
OS	Operating System	
РС	Personal Computer	
RAM	Random Access Memory	
SSH	Secure Shell	
UART	Universal Asynchronous Receiver-Transmitter	
USB	Universal Serial Bus	

xxi

- VCC Voltage Common Collector
- VNC Virtual Network Computing
- **VPN** Virtual Private Network
- WiFi Wireless Fidelity
- WSN Wireless Sensor Network

xxii

CHAPTER 1

INTRODUCTION

This chapter gives a general thought of this project. It discusses the background of research, the problem statement, research objectives, the scope of work, expected result of the project, cost involved in this project and thesis organisation.

1.1 Introduction

The Internet of Things (IoT) has various applications in medicinal services, from remote checking to brilliant sensors and medical device integration. That application will possibly keep patients protected and keep being observed, as well as to enhance how doctors make their decision based on patient condition at the real time. Healthcare IoT can help to understand the needed and fulfilment by enabling patients to save more time and energy to associating with their doctors.

There are as of now various applications for the Internet of Things in healthcare, yet the innovation is as yet still in developing progress. While one of the difficulties of healthcare IoT is the way to deal with the majority of the information it gathers, the eventual fate of IoT will rely upon the capacity of healthcare associations to transform that information into important data.

1.2 Problem Statement

IoT based blood pressure monitor system can give helpful physiological data in the doctor's facility from patient home. This monitoring system is valuable for elderly or incessantly sick patients who might have difficulty to check their condition due to their limited way to be independent. Some of them need help from other people to assist them in the hospital. Remote sensors are used to gather and transmit signal of data and a processor is modified to get and consequently examine the sensor signals. In this project, proper sensors as indicated by what the users might want to identify and design an algorithm to understand the recognition.

Using a single parameter checking it is a way to deal with a blood pressure monitoring system was a design that expands medicinal services setting from patient's home to the doctor's facility. The process was to gather a blood pressure level parameters. The information from the single parameter checking value was then benefited for remote identification.

During planning the accompanying qualities of future medical applications followed:

a) Integration with current patterns in term of practices and innovation.

b) Real-time, long-term, remote checking, miniature, wearable sensors and long battery life of a planned device.

c) Assistance to the elderly and chronic patients. The devices need to be easy to use with minimal buttons.

1.3 Objective Project

The research objectives are stated as follows:

- i. To design and develop an IoT based blood pressure monitor using Raspberry Pi.
- ii. To analyze the performance in term of detectable range and delay based on the experiment setup.