

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Digital Television (DVB-T2) Ultra High Frequency (UHF) Directional Patch Antenna

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Telecommunications) with Honours.

by

IEZAIDAH BINTI NOR SAAFRI B071511096 940308-07-5632

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY 2018

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Digital Television (DVB-T2) Ultra High Frequency (UHF) Directional Patch Antenna

SESI PENGAJIAN: 2018/2019 Semester 1

Saya IEZAIDAH BINTI NOR SAAFRI

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ^{**}Sila tandakan (✓)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
Disahkan oleh:
Cop Rasmi:
Tarikh:
sila lampirkan surat daripada pihak berkuasa/organisasi dan tempoh laporan PSM ini perlu dikelaskan sebagai

DECLARATION

I hereby, declared this report entitled "Digital Television (DVB-T2) Ultra High Frequency (UHF) Directional Patch Antenna" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	IEZAIDAH BINTI NOR SAAFRI
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunication) with Honours. The member of supervisory is as follow:

.....

(EN. MOHD ERDI BIN AYOB)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Antena patch microstrip adalah antena yang sangat terkenal kerana ciri-ciri antena seperti ringan, nipis, mudah dibuat dan lain-lain. Projek ini adalah khusus pada antena patch mikrostrip berarah. Matlamat projek ini adalah untuk merekabentuk antena patch arah untuk berfungsi pada julat frekuensi Ultra Tinggi. Ia akan berdasarkan bahan FR4 Retardant FR4 yang akan direka untuk digunakan dalam televisyen digital (DVB-T2). Projek ini dipisahkan kepada tiga komponen yang menyaksikan parameter antena, simulasi dan reka bentuk perkakasan. Teknologi Simulasi Komputer (CST) digunakan sebagai perisian utama untuk mereka bentuk antena sebelum fabrikasi dilakukan. Kemudian, penganalisis rangkaian dan ruang anechoic akan digunakan sebagai alat untuk menguji antena yang untuk kehilangan kembali, parameter penyebaran (S11) dan corak radiasi. Akhirnya, simulasi dan hasil pengukuran akan dibandingkan.

ABSTRACT

Microstrip patch antenna is a very well-known antenna because of the characteristics of the antenna such as light weight, thin, easy to fabricate and others. The project is specifically on directional microstrip patch antenna. The goal of this project is to design the directional patch antenna to works at Ultra High Frequency ranges. It will have based on the Flame Retardant FR4 material which will be designed to be used in the digital television (DVB-T2). The project is separated into three components which are realization of the antenna parameters, simulation and hardware design. The Computer Simulation Technology (CST) is used as a main software to design the antenna before the fabrication is performed. Then, the network analyzer and anechoic chamber will be used as tools to test the antenna which for the return loss, scattering parameters (S11) and radiation pattern. Finally, the simulation and the measurement result will be compared.

DEDICATION

To my beloved parents

(Mr Nor Saafri Bin Hashim and Mrs Marjuana Binti Abdul)

ACKNOWLEDGEMENT

First of all, I might want to offer my gratitude to the Al-Mighty, ALLAH S.W.T for the gift, I ready to finish my Final Year Project. Thank you to my parents and family members for their invaluable help, consolation, consistent love, significant advices and their comprehension in finishing this project.

I would hereby wish to express my deepest appreciation and gratitude to Encik Mohd Erdi Bin Ayob and Encik Fakhrullah Bin Idris, my respected supervisor and co-supervisor for her on-going dedication, commitment, motivation and valuable guidance in making this project a success. Their consideration, profitable counsel and valuable criticism are extremely essential and have given huge commitment towards my task.

And last, I would like to thank all my lecturers and friends who taught me throughout my education at University Technical Malaysia Melaka.

TABLE OF CONTENT

Abs	trak		i	
Abs	tract		ii	
Ded	ication		111	
Ack	nowledge	ement	iv	
Tab	le of Con	tent	v	
List	of Tables	s	ix	
List	of Figure	es	x	
List	Abbrevia	ations, Symbols and Nomenclatures	xiii	
List	Appendie	ces	XV	
CH	APTER 1	1: INTRODUCTION	1	
1.0	Introdu	uction	1	
1.1	Proble	em Statement	3	
1.2	Object	ives	3	
1.3	Scope	of Project	4	
1.4	Structu	ures of Project Report	4	
CH	APTER 2	2: LITERATURE REVIEW	6	
2.0	Introd	luction to Antennas	6	
2.1	Electr	romagnetic Waves	8	
2.2	Param	neters of Antennas	9	
	2.2.1	Radiation Pattern	9	
	2.2.2	Beamwidth	11	
	2.2.3	Directivity and Gain	12	
	2.2.4	Feed Point Impedance	13	
	2.2.5	Polarization	14	
2.3	Introd	Introduction to Microstrip Patch Antennas		

	2.3.1	Types of Microstrip Patch Antennas	16
	2.3.2	Comparison between Microstrip Patch Antennas	17
	2.3.3	Advantages and Disadvantages of Microstrip Patch Antennas	18
	2.3.4	Application of Microstrip Patch Antennas	19
2.4	RF Fr	equency Band	20
2.5	Televi	ision System	21
	2.5.1	Analogue and Digital Television Broadcasting	22
	2.5.2	Second Generation Digital Video Broadcast-Terrestrial (DVB-T2)	24
	2.5.3	DVB-T2 Basic Standard	25
	2.5.4	DVB-T2 System Overview	26
	2.5.5	Comparison of Analogue and DVB-T2	28
2.6	Previo	ous Work on Microstrip Patch Antenna	29
2.7	Chapt	er Summary	39
CHA	PTER 3	3: METHODOLOGY	40
3.0	Introd	uction	40
3.1	Frequ	ency Band Selection	42
	3.1.1	Standard Classification	42
	3.1.2	Frequency Selection	43
	3.1.3	Comparison with Standard	43
3.2	Anten	na Design	43
	3.2.1	Types of Antenna Selection	44
	3.2.2	Substrate Material	45
	3.2.3	Antenna Parameters	46
	3.2.4	Antenna Design Software	46
	3.2.5	Simulation Test	49
	3.2.6	Fabrication of Antenna	49
	3.2.7	Scattering Parameter Test	51
	3.2.8	Radiation Pattern Test	52
	3.2.9	Antenna Deployment	53
3.3	Expected Results		

3.4	Chapter Summary 54			
СНА	PTER 4	4: RESULT & DISCUSSION	55	
4.0	Introd	uction	55	
4.1	Anteni	na Simulation in CST Software	56	
4.2	Simul	ation Results	58	
	4.2.1	Return Loss	58	
	4.2.2	Gain	59	
	4.2.3	Directivity	60	
	4.2.4	Bandwidth	61	
	4.2.5	Radiation Pattern	62	
	4.2.6	VSWR	63	
4.3	Hardw	vare Antenna Structure	64	
4.4	Hardw	vare Measurement Results	65	
	4.4.1	Return Loss	65	
	4.4.2	Gain	66	
	4.2.3	Bandwidth	67	
	4.2.4	Radiation Pattern	68	
	4.2.5	VSWR	69	
4.5	Comp	arison between Simulation and Hardware Results	70	
4.6	Anten	na Application	72	
	4.6.1	Application Without Antenna	74	
	4.6.2	Application with Directional Patch Antenna	75	
	4.6.3	Application with Yagi-Uda Antenna	77	
4.7	Comp	arison between Antenna Application Results	78	
4.8	Chapt	er Summary	79	
СНА	PTER 5	5: CONCLUSION & FUTURE WORK	80	
5.0	Introd	uction	80	
5.1	Conclu	usion	80	
5.2	Future	Work	81	

vii

5.3	Chapter Summary	81
REF	ERENCES	82
APPI	ENDICES	84

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

2.1	Microstrip Patch Antenna Comparison Table	17
2.2	Advantages and Disadvantages of Microstrip Patch Antenna	18
2.3	RF Frequency Band	20
2.4	Specific Standard of DVB-T2 Across Different Countries	26
2.5	Comparison Between Analog and DVB-T2	28
3.1	Specification of FR4 Board	47
3.2	Expected Result	54
4.1	Antenna Design Specification	55
4.2	Dimension of The Design	57
4.3	Comparison Between Simulation and Hardware Results	71
4.4	List of MYTV Transmitter in Malaysia.	73
4.5	Comparison Between Antenna Application Results	79

LIST OF FIGURES

2.1	Hertz's Radio System	6
2.2	Radiation Lobes of an Antenna Pattern	10
2.3	Beamwidth patterns	11
2.4	Electric Field Components in The Far-Field Region of an Antenna	14
2.5	Polarization States	15
2.6	Microstrip Patch Antenna Configuration	16
2.7	Digital TV Standard in The World	25
2.8	DVB-T2 System Connection	27
2.9	Antenna Patch Design	29
2.10	Ground Plane Design	30
2.11	Return loss at Operating Frequency 600 MHz	30
2.12	VSWR Result	31
2.13	Radiation Pattern Power (Horizontal)	31
2.14	Radiation Pattern Power (Vertical)	32
2.15	Dimension of The Proposed Antenna	33
2.16	Return Loss Result	34
2.17	3D Radiation Pattern of The Proposed Antenna at 650 MHz.	34
2.18	Radiation Pattern at 650 MHz for E-plane	35
2.19	Radiation Pattern at 650 MHz for H-plane	35
2.20	Proposed Antenna Gain	36
2.21	Total Efficiency of The Proposed Antenna	37
2.22	Designed Antenna	38
2.23	Return Loss for The Antenna	38
2.24	Radiation Pattern for The Antenna	39
3.1	Frequency Band Selection Flow Chart	40

3.2	Antenna Design Flow Chart	41
3.3	Operating Frequency and Standard Comparison	43
3.4	Top View of Patch Antenna	44
3.5	Side View of Patch Antenna	45
3.6	Antenna Fabrication Process	50
3.7	Network Analyzer for The Antenna Measurement	51
3.8	Anechoic Chamber Testing for The Radiation Pattern and Gain Measurement	52
3.9	Antenna Deployment to the Equipment Under Test (EUT)	53
4.1	Front View Design	56
4.2	Back View Design	57
4.3	Return Loss Result	58
4.4	Realized Gain Result	59
4.5	Gain (IEEE) Result	60
4.6	Directivity Result	61
4.7	Bandwidth Result	62
4.8	Radiation Pattern Result	63
4.9	VSWR Result	64
4.10	Fabricated Antenna Design	64
4.11	Measurement Result Return Loss	65
4.12	Measurement Result Bandwidth	67
4.13	Channel Allocation in Band IV and V	68
4.14	Measurement Result Radiation Pattern	69
4.15	Measurement Result VSWR	70
4.16	Antenna Application	72
4.17	Application Without Antenna	74
4.18	Result Without Antenna	75
4.19	Application with Directional Patch Antenna	76
4.20	Result with Directional Patch Antenna	76

4.21	Application with Yagi-Uda Antenna	77
4.22	Result with Yagi-Uda Antenna	78

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

MHz	-	Megahertz
GHz	-	Gigahertz
IEEE	-	Institute of Electrical and Electronics Engineers
DVB	-	Digital Video Broadcasting
DVB-T2	-	Second Generation DVB
UHF	-	Ultra High Frequency
VHF	-	Very High Frequency
Mbps	-	Megabits per second
CST	-	Computer Simulation Technology
FR4	-	Flame Retardant 4
dB	-	Decibels
dBi	-	Decibels-isotropic
dBd	-	Lossless half-wave dipole antenna
HPBW	-	Half-Power Beamwidth
FNBW	-	First-Null Beamwidth
GPS	-	Global Positioning System
RFID	-	Radio Frequency Identification
WiMax	-	Worldwide Interoperability for Microwave
RF	-	Radio frequency
IF	-	Intermediate frequency
NTSC	-	National Television System Committee
PAL	-	Phase Alternating Line
SECAM	-	Sequential Couleur Avec Memoire
ATSC	-	Advanced Television Standards Committee

CVBS	-	Composite Video Baseband Signal
T-DAB	-	Terrestrial Digital Audio Broadcasting
DVB-T	-	Digital Video Broadcasting - Terrestrial
MPEG	-	Moving Picture Experts Group
TV	-	Television
DTV	-	Digital Television
HDTV	-	High Definition Television
MYTV	-	Malaysian Television
COFDM	-	Coded Orthogonal Frequency Division Multiplexing
ITU	-	International Telecommunication Union
OFDM	-	Orthogonal Frequency Division Multiplexing
QAM	-	Quadrature Amplitude Modulation
LAN	-	Local Area Network
DTT	-	Digital Terrestrial Television
HDMI	-	High Definition Multimedia Interface
VSWR	-	Voltage standing wave ratio
MCMC	-	Malaysian Communications and Multimedia Commission
PCB	-	Printed circuit board
MMIC	-	Monolithic Microwave Integrated Circuit
PTFE	-	Polytetrafluoroethylene
fr	-	Resonant frequency
εr	-	Dielectric constant
hsub	-	Height of substrate
hpec	-	Height of copper
tan δ	-	Tangent loss of substrate
S11	-	Reflection Coefficient

LIST OF APPENDICES

Appendix A	-	Project Planning	84
Appendix B	-	VSWR Table	85
Appendix C	-	Transmitter Position Around Selangor	86
Appendix D	-	Distance Between Tested Area and Transmitter	87

CHAPTER 1

INTRODUCTION

1.0 Introduction

Nowadays, Malaysia is in the process towards the new technological adoption of digital television broadcasting which is the DVB-T2. DVB-T2 is the second-generation standard for digital terrestrial television. It is the new advanced technology in the world with the robustness, flexibility and more efficiency of designing networks for the delivery of various services such as HDTV (High Definition Television), multichannel SDTV (Standard Definition Television), fixed, portable, mobile and handheld reception. (Shukla, Dixit, Shukla, & Tiwari, 2016)

The project, specify frequency range of the antenna for the DVB-T2 usage will be made. Definition of an antenna according to the Webster's Dictionary generally defined as a metallic gadget (as a bar or wire) for emanating or accepting radio waves while the definition from IEEE standard for terms antennas is the antenna or aerial as methods for emanating or getting radio waves. Aside from getting and transmitting electromagnetic vitality, an antenna is similarly normally required to highlight the radiation in a couple of headings and smother it in others. The outcome, the antenna can likewise be required to work a directional gadget. An antenna can take various structures to satisfy the specific need close by. It can be produced using bits of directing wire, a leading patch, an opening or possibly a get together of such components. In wireless verbal trade frameworks, the antenna is a standout amongst the essential segments considering that it can unwind framework necessities and improve general framework execution. A general illustration is a television for which the quality communicate gathering might be ventured forward essentially through utilizing a superior antenna. The various types of antenna are (Balanis, 2005).

- 1. Wire Antennas
- 2. Aperture Antennas
- 3. Microstrip Antennas
- 4. Array Antennas
- 5. Reflector Antennas
- 6. Lens Antennas

Numerous components enter into the choice of whether to utilize transmission lines or antenna. At low frequencies and short separations, transmission lines are reasonable. As the two separations and frequency increment, the signal misfortunes in transmission lines notwithstanding their cost end up being expansive, making the utilization of antenna more encouraging. Antenna, however, should be used in cell interchanges including airship, rocket, ships, or land vehicles. An antenna is additionally celebrated in communicated conditions wherein one transmitting terminal can serve an unbounded number of recipients, which can likewise or not be a cell. Individually specialized gadgets including cell phones additionally require antennas (Balanis, 2005).

1.1 Problem Statement

The emerging of digital television broadcasting and reception in Malaysia is fairly new since the year 2015. The digital video broadcast – terrestrial 2 (DVB-T2) is being used for the standards in DVB-T2 broadcasting. The previous analog system will phase out in first quarter 2019 in Malaysia. The DVB-T2 utilized the UHF band from 510 MHz to 798 MHz (Communications & Commission, 2004). It has been reported that a few locations of the DVB-T2 reception were not at optimal states (Norsuzila et al., 2017). The penetration of the DVB-T2 system can be greatly increased by having an optimal longrange UHF directional antenna with the usage of a small and portable patch antenna. The patch antenna is about to be effective by having a good design to attain a sufficient signal to noise ratio and balanced gain versus antenna size which later to begins deployed into the DVB-T2 setup box or decoder.

1.2 Objectives

- i. To design a microstrip patch antenna for Second Generation DVB (DVB-T2) with the frequency of Ultra-High Frequency range.
- ii. To analyze the performance of the microstrip patch antenna in term of Sparameter and radiation pattern.
- iii. To deploy the microstrip patch antenna to the DVB-T2 decoder.

1.3 Scopes of Project

The scope of the project is limited to the microstrip patch antenna specifically to the usage of DVB-T2 digital television reception. The frequency band is in UHF ranges from 510 MHz to 798 MHz. It comprises of two section which are the simulation and hardware design. The microstrip antenna will be designed and simulated by using the CST software for the fabrication process by using the FR4 copper board. Next, the physical microstrip antenna will be measured for its performance by using a network analyzer for the scattering parameter, gain, VSWR, and input impedance. On the other hand, correct radiation pattern shall be tested inside the anechoic chamber for better visibility of the antenna reception beam. The microstrip patch antenna also will be installed to the DVB-T2 decoder to get the actual reception and performance readout. Lastly, the area to be tested is around Klang, Selangor.

1.4 Structures of Project Report

The project report is organized as follows:

Chapter 1 – Introduction: This chapter gives a short introduction to the analysis which consists of background, problem statement, objective and scope of the project.

Chapter 2 – Literature review: This chapter provides background information that is related to the research work inclusive of the antenna operation, antenna parameters, types of antenna, microstrip patch antenna with the application in television broadcasting. The aims are to design directional patch antenna that can operate in UHF ranges, a literature review of previously designed techniques was study and measured.

Chapter 3 – Methodology: The process and the method used for this project are discussed inclusive the antenna design specifications which is a comparison to the standard and hardware development including selection types of substrate, feeding method and fabrication of antenna were determined. The software development and measurement by using CST is addressed in this chapter.

Chapter 4 – Result & Discussion: The simulation and hardware results are discussed in this chapter by taking the considerations for the antenna design and explaining the decision taken.

Chapter 5 – Conclusion & Future Work: This chapter gives a short conclusion and future work that can be done to improve the antenna performance in the context of antenna testing.

C Universiti Teknikal Malaysia Melaka