

### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# DEVELOPMENT OF AN OBJECT TRACKING SYSTEM BY USING ULTRASONIC

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering Technology (Telecommunication) with Honours.

By

### NUR SYAFIKA NAJIHAH BINTI KAMARUDIN B071510530 961116-11-5284

## FACULTY OF ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY

2018

C Universiti Teknikal Malaysia Melaka



UNIVERSITI TEKNIKAL MALAYSIA MELAKA

### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

| TAJUK: Development of an object tracking system by using ultrasonic                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| SESI PENGAJIAN: 2018/2019 Semester 1                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Saya NUR SYAFIKA NAJIHAH BINTI KAMARUDIN                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti<br>Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:                                                                                                                                                                                                                                                       |  |  |  |  |
| <ol> <li>Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan<br/>penulis.</li> <li>Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan<br/>membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.</li> <li>Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai<br/>bahan pertukaran antara institusi pengajian tinggi.</li> <li>**Sila tandakan (✓)</li> </ol> |  |  |  |  |
| SULIT       (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)         TERHAD       (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)                                                                                                                                  |  |  |  |  |
| Disahkan oleh:                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Alamat Tetap: Cop Rasmi:                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| TERBANG, 23000 DUNGUN<br>TERENGGANU                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Tarikh:                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| ** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.                                                                                                                                                                                              |  |  |  |  |

### DECLARATION

I hereby, declared this report entitled Development of an Object Tracking System by Using Ultrasonic is the results of my own research except as cited in references.

| Signature     | : |                                     |
|---------------|---|-------------------------------------|
| Author's Name | : | Nur Syafika Najihah Binti Kamarudin |
| Date          | : |                                     |



### APPROVAL

This report is submitted to the Faculty of Electrical and Electronics Engineering Technology of Universiti Teknikal Malaysia Melaka as a partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunications) with Honours. The member of the supervisory is as follow:

.....

(Ts Madam Zahariah Binti Manap)

### ABSTRAK

Sistem penjejakan objek dengan menggunakan ultrasonik adalah satu jenis sistem kedudukan dalaman (IPS) yang memberikan penyelesaian untuk mencari objek dalam struktur tertutup seperti bangunan, terowong dan tempat bawah tanah di mana peranti sistem kedudukan global (GPS) umumnya tidak berfungsi. Tujuan projek ini adalah untuk membangunkan sistem pengesanan dengan menggunakan ultrasonik yang menjejaki objek dalam persekitaran tertutup dalam kawasan tertentu. Sistem pengesanan ini terdiri daripada tiga komponen utama iaitu mikropengawal, motor servo dan pengesan ultrasonik. Kaedah untuk eksperimen ini akan dijalankan di mana kedudukan objek berada dalam koordinat 2D, tiga ultrasonik dipasang pada setiap tiga motor servo diletakkan dalam bentuk segi tiga untuk melaksanakan algoritma trilateration. Hasil yang dari projek ini adalah sistem pengesanan yang dapat menjejaki objek secara automatik. Hasil daripada projek ini dianalisis untuk menguji prestasi sistem pengesanan yang dibangunkan berdasarkan ketepatan kedudukan. Ketepatan sistem penjejakan adalah berdasarkan ralat yang dikira apabila sistem pengesan menjejaki objek. Hasil daripada analisis projek menunjukkan ralat sistem penjejakan objek ialah 6.78cm. Selain itu, pada 90% daripada kebarangkalian kumulatif ralat akar purata persegi untuk kedudukan anggaran ialah 7.3cm. Projek ini memberi banyak manfaat kepada pengguna untuk mengesan kedudukan objek sasaran mereka di kawasan tertutup seperti kompleks perbelanjaan, kilang, lapangan terbang dan lainlain.

### ABSTRACT

Object tracking system by using ultrasonic is one of Indoor Positioning System (IPS) which gives a solution to locate objects in closed structure such as building, tunnels and underground places where Global Positioning System (GPS) device generally do not work. The purpose of this project is to develop a tracking system by using ultrasonic that tracks an object in indoor environment within specific area. This tracking system consists of three main components which are the microcontroller, servo motor and ultrasonic sensors. The trilateration algorithm use in this experiment to obtain the position the object is in 2D coordinates. Three ultrasonic sensors that attach to each of three servo motor are placed in triangular form to perform trilateration algorithm. The tracking system can tracks object automatically. The result from this project is analysed to identify the performance of this tracking system based on the positioning accuracy. The accuracy of the tracking system is based on errors calculate when the tracking system track the object. Based result analysis, the error of tracking system is 6.78cm. In addition, at 90% of cumulative probability the RMSE for estimate position is 7.3cm. The project gives a lot of benefit to users in order to detect or track the position of their targeted object that in the closed region like shopping complex, factory, airport and other.

### **DEDICATION**

Alhamdulillah, praise to the Almighty Allah S.W.T

This thesis is dedicated to:

My Parents,

Mr Kamarudin Bin Omar and Mrs Maziah Binti Abdul Aziz



### ACKNOWLEDGEMENT

Alhamdulillah, thank you Allah because of His blessing, I finally complete and finish my final year project successfully.

During the process to complete my project objective, I do a lot of research either by using internet, reading past year thesis, reference books and journal. With the guidance and support from peoples around me, I finally complete the project due to the time given. Here, I want to give credit to those who helped me to achieve what I had achieved in my final year project.

First and foremost, I would like to express my deep sense of gratitude and acknowledgement to my supervisor Madam Zahariah Binti Manap for her timely guidance, advices, valuable and constructive suggestions during the planning and developing of this project. In addition thanks for her support and encouragement throughout this final year project. Other than that, I would like to thank my friends Halimatun Saadiah and Nor Ainan for their support and help in order for me to successfully complete this project. I would like to show appreciation everyone who is involved in this project either directly or indirectly for their helps and co-operation, and also to my family. Without their support, I would not have been able to finish my final year project.

# **TABLE OF CONTENTS**

| Proje | ect title                     |                                    | i    |  |
|-------|-------------------------------|------------------------------------|------|--|
| Repo  | ort status                    | s confirmation form                | ii   |  |
| Decl  | aration                       |                                    | iii  |  |
| App   | roval                         |                                    | iv   |  |
| Abst  | rak                           |                                    | V    |  |
| Abst  | ract                          |                                    | vi   |  |
| Dedi  | cation                        |                                    | vii  |  |
| Ackı  | nowledg                       | gement                             | viii |  |
| Tabl  | e of cont                     | tent                               | ix   |  |
| List  | of figure                     | es                                 | xii  |  |
| List  | of table                      |                                    | xiv  |  |
| List  | of abbre                      | eviation, symbols and nomenclature | XV   |  |
| CH    | DTED                          |                                    |      |  |
| CHA   | APTER                         | 1: INTRODUCTION                    | 1    |  |
| 1.1   | Proje                         | ect background                     | 1    |  |
| 1.2   | Probl                         | lem Statement                      | 3    |  |
| 1.3   | Objec                         | ctive                              | 4    |  |
| 1.4   | Scope                         | e                                  | 5    |  |
| 1.5   | Proje                         | ect significance                   | 6    |  |
| СНА   | PTER                          | 2: LITERATURE REVIEW               | 7    |  |
| 2.1   | Introd                        | duction                            | 7    |  |
| 2.2   | 2 Overview of object tracking |                                    |      |  |
| 2.2   | Techr                         | nologies of object tracking        | 12   |  |
| 2.5   | 2 3 1                         | Liltrasonic technology             | 12   |  |
|       | 2.3.1                         | Ultra-Wideband technology          | 12   |  |
|       | 2.3.2                         | Wi Ei taaku ala ay                 | 10   |  |
|       | 2.3.3                         | wi-ritechnology                    | 18   |  |

|     | 2.3.4  | Radio frequency Identification (RFID) technology                    | 20 |
|-----|--------|---------------------------------------------------------------------|----|
|     | 2.3.5  | Bluetooth Low Energy (BLE) technology                               | 22 |
|     | 2.3.6  | Visible light Communication (VLC) technology                        | 23 |
|     | 2.3.7  | Summary of technologies used in indoor positioning                  | 25 |
| 2.4 | Metho  | od in indoor positioning system                                     | 26 |
|     | 2.4.1  | Time of Flight (TOF)                                                | 26 |
|     |        | 2.4.1.1 Time of Arrival (ToA)                                       | 26 |
|     |        | 2.4.1.2 Time Difference of Arrival (TDoA)                           | 28 |
|     | 2.4.2  | Angle of Arrival (AoA)                                              | 29 |
|     | 2.4.3  | Received signal Strength (RSS)                                      | 30 |
|     | 2.4.4  | Summary of methods applied                                          | 31 |
| 2.5 | Summ   | ary of the chapter                                                  | 32 |
| CHA | PTER 3 | B: METHODOLOGY                                                      | 35 |
| 3.1 | Introd | uction                                                              | 35 |
| 3.2 | Projec | t overview                                                          | 36 |
| 3.3 | Hardw  | vare development                                                    | 38 |
|     | 3.3.1  | Network layout                                                      | 39 |
| 3.4 | Softwa | are development                                                     | 47 |
|     | 3.4.1  | Trilateration algorithm                                             | 51 |
| 3.5 | Summ   | ary                                                                 | 52 |
| CHA | PTER 4 | : RESULT AND DISCUSSION                                             | 53 |
| 4.1 | Introd | uction                                                              | 53 |
| 4.2 | The da | ata for true position and estimate position                         | 54 |
| 4.3 | Data f | or estimate position and RMSE                                       | 57 |
| 4.4 | Data f | or simulation position and RMSE                                     | 59 |
| 4.5 | The C  | umulative Distribution Probability for tracking system              | 61 |
| 4.6 | Data c | of estimate position for 3 different sizes of object and their RMSE | 62 |
| 4.7 | The C  | umulative Distribution Probability for tracking system              | 63 |
|     | by usi | ng three different sizes of object                                  |    |
| 4.8 | Summ   | hary                                                                | 64 |

| CHA | CHAPTER 5: CONCLUSION         |    |  |
|-----|-------------------------------|----|--|
| 5.1 | Introduction                  | 65 |  |
| 5.2 | Conclusion                    | 65 |  |
| 5.3 | Future works                  | 67 |  |
| REF | FERENCES                      | 68 |  |
| APP | PENDICES                      | 73 |  |
| A.  | Project planning (gant chart) | 73 |  |
| B.  | Arduino coding                | 75 |  |
| C.  | Visual basic coding           | 83 |  |
| D.  | Formula                       | 89 |  |



# **LIST OF FIGURES**

| 2.1  | Ultrasonic range finder detecting object                             | 12 |
|------|----------------------------------------------------------------------|----|
| 2.2  | RFID system components.                                              | 20 |
| 2.3  | Basic block diagram for indoor VLC.                                  | 24 |
| 2.4  | Location sensing technique by using ToA.                             | 27 |
| 2.5  | Location sensing technique by using TDoA.                            | 28 |
| 2.6  | AoA measurement.                                                     | 29 |
| 2.7  | RSS measurement.                                                     | 30 |
| 3.1  | Flowchart for project .                                              | 37 |
| 3.2  | Block diagram of development of object tracking by using ultrasonic. | 38 |
| 3.3  | Layout of object tracking system.                                    | 39 |
| 3.4  | Actual layout of object tracking system                              | 40 |
| 3.5  | Arduino UNO board.                                                   | 41 |
| 3.6  | Ultrasonic sensor hardware.                                          | 42 |
| 3.7  | Servo motor hardware.                                                | 43 |
| 3.8  | Flowchart based on how the tracking system works.                    | 45 |
| 3.9  | Connection of servo motor and ultrasonic sensor with Arduino module. | 46 |
| 3.10 | Layout of object tracking system on VB GUI                           | 47 |
| 3.11 | Flowchart for VB GUI software                                        | 48 |

| 3.12 | Flowchart for Matlab software                                   | 50 |
|------|-----------------------------------------------------------------|----|
| 3.13 | Trilateration algorithm                                         | 51 |
| 4.1  | Layout of true position and estimate position                   | 56 |
| 4.2  | (a) Error in estimate position (b) Error in simulation position | 59 |
| 4.3  | Cumulative probability vs RMSE                                  | 61 |
| 4.4  | Cumulative probability vs RMSE for 3 different size of object   | 63 |

C Universiti Teknikal Malaysia Melaka

# LIST OF TABLES

| 2-1 | Comparison between technologies used in indoor tracking system. | 8  |
|-----|-----------------------------------------------------------------|----|
| 2-2 | Comparison of indoor tracking system's technique.               | 10 |
| 2-3 | Comparison between articles based on technologies and method    | 32 |
|     | used in indoor tracking system.                                 |    |
| 3-1 | Arduino UNO specification                                       | 41 |
| 3-2 | Ultrasonic sensor specification.                                | 42 |
| 4-1 | True positon and estimate position                              | 55 |
| 4-2 | Root Mean Square Error (estimate position)                      | 58 |
| 4-3 | Root Mean Square Error (simulation position)                    | 60 |
| 4-4 | RMSE for 3 different sizes of object                            | 62 |

# LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

| AP     | - | Access Point                                        |
|--------|---|-----------------------------------------------------|
| AOA    | - | Angle of Arrival                                    |
| BLE    | - | Bluetooth Low Energy                                |
| EEPROM | - | Electrically Erasable Programmable Read-Only Memory |
| EKF    | - | Extended Kalman Filtering                           |
| FP     | - | Fingerprinting                                      |
| GPS    | - | Global Positioning System                           |
| GSM    | - | Global System Mobile Communication                  |
| GUI    | - | Graphic User Interface                              |
| IoT    | - | Internet of Thing                                   |
| IPS    | - | Indoor Positioning System                           |
| IR-UWB | - | Impulse Radio Ultra-Wideband                        |
| KF     | - | Kalman Filtering                                    |
| KNN    | - | K-nearest Neighbor                                  |
| LOS    | - | Line of Sight                                       |
| LUT    | - | Look-Up Table                                       |
| PPI    | - | Pixel Per Inch                                      |
| PRM    | - | Polynomial Regression Model                         |
| PWM    | - | Pulse Width Modulation                              |
| RF     | - | Radio Frequency                                     |

| RFID   | - | Radio Frequency Identification                |
|--------|---|-----------------------------------------------|
| RMSE   | - | Root Mean Square Error                        |
| RSS    | - | Received Signal Strength                      |
| RSSI   | - | Received Signal Strength Indicator            |
| SRAM   | - | Static Random Access Memory                   |
| SWOT   | - | Strengths, Weaknesses, Opportunities, Threats |
| TDOA   | - | Time Difference of Arrival                    |
| TOA    | - | Time of Arrival                               |
| TOF    | - | Time of Flight                                |
| USB    | - | Universal Serial Bus                          |
| UWB    | - | Ultra-Wide Band                               |
| VB GUI | - | Visual Basic Graphical User Interface         |
| VLC    | - | Visible Light Communication                   |
| WLED   | - | White Light Emitting Diode                    |

# CHAPTER 1 INTRODUCTION

In this chapter the overview of the project will be briefly discussed. This chapter also emphasizes the problem statement, objectives of the project, scope, and the organisation of the whole report.

#### 1.1 Project background

Object detection and tracking is the basis of many applications in surveillance and activity recognition. The object tracking system by using ultrasonic system is one of the tracking systems that can be implemented in closed areas or famously known as indoor positioning system (IPS). IPS is used to track objects in closed area such as inside campus building, factories or any other closed place where the Global Positioning System (GPS) is not available. Many researches and development have been carried out on the IPS in order to obtain high accuracy of a real-time object tracking. The development of IPS involves many technologies like ultrasonic, Radio Frequency Identification (RFID), Wi-Fi, Ultra-wideband (UWB) and other are introduced and implemented into the IPS. All of these technologies have their own advantages and disadvantages to the positioning system. Other than that, many types of methods and algorithm are applied to the IPS in order to obtain the position of the object. The methods implemented have strong relationship with the technologies in IPS. Each of the technologies has its specific positioning method for it to work correctly.

The aim of this project is to develop an object tracking system by using ultrasonic. The ultrasonic technology is chosen because it has low implementation cost, easy to configure, high energy efficiency and easy to understand how it work in the IPS. Ultrasonic of IPS provide fine grained object's position with centimetre level of accuracy. The system consists of three main components which are microprocessor, ultrasonic sensors and servo motor. The microprocessor used in this project is Arduino UNO module. The Arduino UNO module acts as the brain of the tracking system where all processes are handled by the module. As for ultrasonic sensors, they detect the object in system region and feed the signal to the microprocessor. In order for a system to track the object automatically, the servo motors are used because it can follow any moving object around it.

The result from this project shows that the ultrasonic sensors able to detect an object in a specific region and display the position of object in 2-dimensional coordinates. The result is used to analyse the performance of the developed system based on the positioning accuracy. This project also, may be used to implement the indoor object localization and navigation that support several applications for example navigational support for the blind people, tour guide robots, inventory and asset tracking, and defence.



#### 1.2 Problem Statement

The issue that involves tracking people and objects in closed area remain as a technical challenge in the positioning system. The systems that can accurately detect the location of a target are still under rapid development. The use of GPS which is one of famous positioning system is not helpful in the case of indoor tracking and positioning due to the limited satellite reception. The GPS reception is weak in the indoor environment. Likewise, inside the closed area like tunnels, underground places and buildings, the GPS availability and coverage is nearly impossible. Due to this limitation, a tracking system is introduced in order to track the location of targeted object in the closed environment.

One of famous IPS is by using the ultrasonic. This is due to the ability of ultrasonic sensors to detect an object in some range accurately. This ability is very helpful to solve the problem in IPSs. The tracking system using the ultrasonic might be a system that is easy to implement and able to grab full general knowledge about object tracking system. Therefore, through this project ultrasonic sensors are used to build an IPS.



#### 1.3 Objectives

The aim of this project is to develop an object tracking system by using ultrasonic technology. There are three objectives as listed below;

- 1. To develop a tracking system that is able to automatically detect the position of an object.
- 2. To integrate ultrasonic sensors and servo motors to the Arduino microcontroller.
- 3. To analyse the performance of the object tracking system based on the positioning accuracy.



#### 1.4 Scope

The extent of this venture is to track an object in specified area by using the three ultrasonic sensors and servo motors. The prototype is built to cater  $100 \times 100 \text{ cm}^2$  indoor areas. The area is sectorized into 100 sectors; each of point in the area represents one x-y coordinate. Tracking system of this project can track only one object at one time due to the limitation of ultrasonic sensors that used line of sight (LOS) technique. LOS is one type of propagation where transmitter and receiver can communicate with each other with any obstacle between them. The implementation of LOS in ultrasonic sensor happen when ultrasonic emitted signal with velocity of sound. If they strike an object, the signal will reflected back to the sensor. The distance of object is computed based on time taken between emitted signal and echo signal. Operation of this tracking system might be disrupted if there is any obstacle between ultrasonic sensor and target because the emitted signal is reflected back to sensor without reach to target. However, the type of barrier material also affects ultrasonic performance. Signal of Ultrasonic sensor can pass through a material with low attenuation coefficient. The height of object used in this project is 3.5cm and the diameter of object is 8.0cm. The object must be at least same height as ultrasonic sensor for the system able to detect that object accurately.

#### 1.5 **Project significance**

In term of commercialization, this project is hoped to provide an accurate object tracking system for indoor environment which are highly demanded in the market. This system is enthralling the business opportunities as it provides a low equipment cost, low maintenance expenses and simple infrastructure. The project gives a lot of benefit to users in order to detect or track the position of their targeted object that in the closed region like shopping complex, factories, airport and other. Therefore, instead of manually search and detect the object user can detect object automatically. This can save time and make life more easier.



# CHAPTER 2 LITERATURE REVIEW

#### 2.1 Introduction

Nowadays, the object tracking systems are widely used for tracking and navigation applications in indoor environments. Many researches have been carried out in enhancing and improving object tracking system in closed area. This chapter reviews articles and works from previous researches on object tracking system.

#### 2.2 Overview of object tracking system

A detail survey on indoor tracking system can be found in (Dragan H. Stojanović, 2014; Dardari, Closas and Djuric, 2015; Alarifi *et al.*, 2016; Brena *et al.*, 2017) The authors described the technologies, techniques and algorithms used for indoor tracking system. The most common and widely used technologies as mentioned in the articles are ultrasonic, Ultra-wideband (UWB), Wi-Fi, ZigBee and radio frequency identification (RFID). Alarifi et al (2016) focused on the Ultra-wideband (UWB) technology by providing the SWOT analysis of this technology. Brena et al (2017) made a comparison of technologies used for indoor positioning between his article and other articles. **Error! Reference source not found.** illustrates the comparison between technologies used in IPS which done by authors in (Brena *et al.*, 2017) Meanwhile, Dragan H. Stojanovic(2014) and Dardari et al (2015) also sort a comparison between the technologies used in indoor tracking system but specifically based on their technique, algorithm, accuracy, scalability, and cost.

| Technologies with signal encoding |                         |          |                              |                                                   |  |
|-----------------------------------|-------------------------|----------|------------------------------|---------------------------------------------------|--|
| Technology                        | Approximate<br>accuracy | Coverage | Strength                     | Weakness                                          |  |
| Infrared                          | 57cm – 2.3m             | Room     | Low cost                     | Have the<br>sunlight<br>interference              |  |
| VLC                               | 10cm                    | Building | Low cost                     | Have<br>environment<br>interference               |  |
| Ultrasonic                        | 1cm - 2m                | Room     | Good precision               | Have<br>interference                              |  |
| Wi-Fi                             | 1.5m                    | Building | Low cost and good precision  | Exposed to<br>access point                        |  |
| Bluetooth                         | 30cm-meters             | Building | Low cost and good precision  | Signal<br>mapping is<br>needed.                   |  |
| ZigBee                            | 25cm                    | Building | Can reuse the infrastructure | Low precision<br>and need<br>special<br>equipment |  |
| RFID                              | 1m – 5m                 | Room     | Low cost and passive side    | Very low<br>precision                             |  |
| UWB                               | 15cm                    | Building | High precision               | High cost                                         |  |

# Table 2-1: Comparison between technologies used in indoor tracking system.Technologies with signal encoding

Г