

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF GREENHOUSE MONITORING SYSTEM USING IOT

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor of Electronic Engineering Technology (Telecommunication) with Honours

By

MOHAMAD IZZAT BIN KAMAL IZANI

B071510111

930507-03-5715

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2018

🔘 Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF GREENHOUSE MONITORING SYSTEM USING IOT

Sesi Pengajian: 2019

Saya **MOHAMAD IZZAT BIN KAMAL IZANI** mengaku menbenarkan Laporan PSM ini disimpan di perpustakan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

	SULIT*	kepentingan RAHSIA RASM	Malaysia I 1972.	seba	gaimana	yang	termal	ktub	dalam	ΑΚΤΑ
	TERHAD*	Mengandungi organisasi/bac	maklum Jan di ma	nat na pe	FERHAD nyelidika	yang n dijala	telah ankan.	dite	ntukan	oleh
\boxtimes	TIDAK TERHAD									
Yang b	oenar,			Disa	hkan olel	n penye	elia:			
МОНА	MAD IZZAT BIN	KAMAL IZANI		NUR	LIYANA E	BINTI A	BD MU	ΓALIB	6	
Alama PT 125 JALAN PENGI 16100 KELAN	t Tetap: 55 TAMAN SERI 5 PADANG TEMB, KALA CHEPA , KOTA BHARU, ITAN	SETIA, AK,		Сор	Rasmi Pe	nyelia				
Tarikh	:3/12/2008			Taril	kh:					

Mengandungi maklumat yang berdarjah keselamatan atau

DECLARATION

I hereby, declared this report entitled "Development of greenhouse monitoring system using IoT" is the results of my own research except as cited in references.

Signature:

Author: MOHAMAD IZZAT BIN KAMAL IZANI

Date : 2 December 2018

APPROVAL

This report is submitted to the Faculty of Electrical & electronic Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honors. The member of the supervisory is as follow:

Signature

Supervisor: NURLIYANA BINTI ABD MUTALIB

ABSTRAK

Rumah hijau memainkan peranan penting dalam sektor pertanian di negara kita, kerana ia boleh digunakan untuk menanam tumbuh-tumbuhan di bawah keadaan cuaca yang terkawal untuk mana-mana tahun untuk mendapatkan lebih banyak hasil. Walaupun penanaman tradisi tumbuhan memerlukan banyak kerja keras dan perhatian untuk memantau dan terdapat beberapa kelemahan dalam melaksanakan teknik penanaman tradisional. Sistem pemantauan rumah hijau menggunakan IoT sangat efektif untuk petani dan sistem ini berguna bagi petani untuk menanam tanaman penting secara ekonomi. Kebanyakan tumbuhan hanya boleh ditanam di beberapa iklim pada waktu tertentu tahun ini, tetapi perlu memantau untuk menjaga tumbuhan untuk mengetahui keadaannya. Tumpuan utama sistem ini berkaitan dengan pemantauan dan kawalan keadaan persekitaran seperti suhu, kelembapan relatif, sensor tanah dan menghantar maklumat ke halaman web dan kemudian plot grafik sebagai statistik. Kemudian sistem ini akan dikawal dengan menggunakan blynk untuk mengawal persekitaran di dalam rumah hijau. Terakhir sistem ini akan mengurangkan tenaga petani.

ABSTRACT

Greenhouses play an important role in the agricultural sector in our country, as it can be used to grow plants under controlled weather conditions for any year to get more produce. Although the cultivation of plant tradition requires a great deal of hard work and attention to monitor and there are some weaknesses in implementing traditional planting techniques. Greenhouse monitoring system using IoT is very effective for farmers and this system will be useful for farmers to plant economically important crops. Most plants can only be planted in certain climates at certain times of the year, but need to monitor to take care of plants to know condition it. The main focus of this system deals with monitoring and controls the environmental conditions like temperature, relative humidity, soil sensors and sends the information to the web thingspeak and then plot the graph as statistics. Then this system will be control by using blynk to control the environment inside greenhouse. Last this system will be reducing the energy of a farmer.

DEDICATION

To my beloved parents (Mrs Rosemawati Binti Haji Mat) and my family (Nurul Adlina Binti Kamal Izani, Nurul Fatin Binti Kamal izani, Nurul Anis binti kamal izani and Mohamad izzlin Bin Kamal izani)

ACKNOWLEDGEMENT

First of all, thanks to God as the Final Year Project (FYP) is completed without any difficulty and distraction. I hereby would like to take this precious opportunity to thank all people who has involved generously in helping and assisting me while I was completing the FYP report which is a compulsory to all Universiti Teknikal Malaysia Melaka (UTeM) students in order to complete our degree.

First and foremost, I would like express my sincere acknowledgement to my supervisor Mrs. Nurliyana Binti Abd Mutalib from the Electronic and computer Engineering Department from Faculty of Technology Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his undivided support morally and physically, assistance, guidance, tolerance, constructive critics and suggestion during the planning and development of this project.

Secondly, I would like to express my sincere thanks and appreciation to my entire lecturer from Faculty of Technology Engineering (FTK) who had pass down their knowledge and guide me as well during my studies in UTeM. Besides that, I would like to express my sincere thanks and appreciation to my beloved family especially my parents for giving me support, encouragement and motivation for starting of the project until completion of the project.

I would like to thank everyone who is involved in this project either directly or indirectly for their helps and cooperation. Last but not least, special thanks to all my friends and course mates and to all those who help for making my time at UTeM a memorable one

TABLE OF CONTENT

Declaration	ii
Approval	iii
Abstrak	iv
Abstract	V
Dedication	vi
Acknowledgement	vii
Table of Content	viii-xi
List of Tables	xii
List of Figures	xiv-xv
List of Appendix	xvii
List of Abbreviations	xvi

CHAPTER 1:		INTRODUCTION	PAGE
1.0	Introduction		1
1.1	Background		1
1.2	Problem Statement		2
1.3	Objective		2
1.4	Scope		3
1.5	Organization		3

viii C Universiti Teknikal Malaysia Melaka

CHAPTER 2: LITERATURE REVIEW

2.0	Introduction	4
2.1	Comparison between Wi-Fi, Bluetooth and GSM	4-6
2.2	Previous related work with using internet of things (IoT)	7-10
	2.2.1 Smart greenhouse automation using arduino	7
	2.2.2 Greenhouse monitoring and controlling	8
	2.2.3 Greenhouse automation using internet of things	9
	2.2.4 Automatic monitoring and control system inside greenhouse	10
2.3 Pr	evious related work with Bluetooth or zigbee	11-12
	2.3.1 Wireless monitor and control system for greenhouse	11
	2.3.2 Greenhouse monitoring and automation	12
2.4 Pr	evious related work with using global system for mobile (GSM)	13-17
	2.4.1 Greenhouse monitoring and automation using GSM	13
	2.4.2 PIC microcontroller based greenhouse monitoring and controlling	14
	2.4.3 Greenhouse monitoring and automation system using microcontrolle	er 15
	2.4.4 Greenhouse monitoring and control based using WSN	16
	2.4.5 Greenhouse monitoring and control of temperature and soil moisture	e 17

CHAPTER 3 METHODOLOGY

3.0	Introduction	22
3.1	Flow chart for this project methodology	23
3.2	Block diagram project	24
3.3	Flow chart system monitoring greenhouse	25
3.4	Equipment	26-34
	3.4.1 nodeMCU	26-27
	3.4.2 Sensor temperature and humidity (DHT11)	28-29
	3.4.3 Soil moisture sensor	30
	3.4.4 Relay module	31
	3.4.5 LM2596	32
	3.4.6 Cooler fan	33
	3.4.7 Water pump	33
	3.4.8 Bulb	34
3.5	Cost of project	34

CHAPTER 4 RESULT AND ANALYSIS

4.1	Expected result	35	5-36

4.2	Design circuit	37
4.3	Development tools	38
	4.3.1 Thingspeak	38
	4.3.2 Blynk	39
4.4	Result and analysis	40-51
4.5	Comparison table and graph for the 3 days	52-55
4.6	Conclusion	55
CHA	PTER 5 CONCLUSION AND RECOMMENDATION	
5.1	Introduction	56
5.2	The advantage of greenhouse system	56
5.3	Problem this project	56
5.4	Conclusion	57
5.5	Recommendation	57
REFERENCES		58-59
APPE	ENDIX	60-66

LIST OF TABLE

TABLE	TITLE	PAGE
Table 2.1	Comparison between Zigbee, Bluetooth, wifi and GSM	6
Table 2.2	Comparison literature review	19-21
Table 3.1	Technical specification of nodeMCU	27
Table 3.2	Technical Specification of Relay Module	31
Table 3.3	Expectation cost of the project	34
Table 4.1	First day result temperature	40
Table 4.2	First day result humidity	41
Table 4.3	First day result soil humidity	42
Table 4.4	Second day result temperature	44
Table 4.5	Second day result humidity	45
Table 4.6	Second day result soil humidity	46
Table 4.7	Third day result temperature	48
Table 4.8	Third day result humidity	49
Table 4.9	Third day result soil humidity	50
Table 4.10: 0	Comparison temperature for 3 days	52
Table 4.11 c	comparison himidity for 3 days	52
Table 4.12 c	omparison soil himidity for 3 days	53
Table 4.13 the best parameter for system monitoring greenhouse55		

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Bluetooth module	4
Figure 2.2	Wi-Fi module	5
Figure 2.3	SIM900 GSM	5
Figure 2.4	Block diagram monitoring control greenhouse	7
Figure 2.5	Block diagram monitoring control greenhouse	8
Figure 2.6	Flow chart the system monitoring greenhouse	9
Figure 2.7	Block diagram overview system greenhouse	10
Figure 2.8	The system architecture	11
Figure 2.9	System overview monitoring greenhouse	12
Figure 2.10	Circuit monitoring greenhouse	13
Figure 2.11	Block diagram of overall monitoring greenhouse	14
Figure 2.12	Block diagram project monitoring greenhouse	15
Figure 2.13	Block diagram system monitoring	16
Figure 2.14	Circuit diagram monitoring greenhouse system	17
Figure 3.1	Block diagram monitoring system greenhouse	24
Figure 3.2	nodeMCU	26

Figure 3.3	Sensor temperature and humidity (DHT22)	28
Figure 3.4	Technical specification of DHT 22	29
Figure 3.5	Soil moisture sensor	30
Figure 3.6	Technical specification of soil moisture sensor	30
Figure 3.7	Relay Module	31
Figure 3.8	LM2596	32
Figure 3.9	Technical Specifications LM2596	32
Figure 3.10	Cooler fan	33
Figure 3.11	Water pump	33
Figure 3.12	Bulb	34
Figure 4.1	Technical Specification of System Greenhouse	35
Figure 4.2	Circuit greenhouse systems	37
Figure 4.3	Thingspeak	38
Figure 4.4	Blynk	39
Figure 4.5:	Graph in first days	43
Figure 4.6:	Graph second days	47
Figure 4.7:	Graph third days	51
Figure 4.8:	Comparison temperatuer for 3 days	52
Figure 4.9:	Comparison himidity for 3 days	53

Figure 4.10 comparison soil himidity for 3 days	
Fgure 4.11 comparison those three days	54

LIST OF ABBREVIATIONS

GSM	Global system of mobile communication
IoT	internet of Things
2G	second generation
USB	universal serial bus
PWM	pulse width modulation

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Coding	60-64
Appendix 2	Gantt chart	65-66

CHAPTER 1

INTRODUCTION

1.0 Introduction

The main aim greenhouse monitoring system to help the user to monitor and control the environment parameter. Based on this system it can be reduce the energy of human and assist to monitoring inside greenhouse. This system is the new technology for the monitoring system because this system used the latest technology Internet of Thing (IoT). This system enables the user to know the condition parameter greenhouse and find out the solution to solve the problem inside greenhouse

1.1Background

Based on (Rahman 2012) was study about agricultural in Malaysia. Malaysia obtained her independent 55 years ago and agriculture has contributed substantially to its gross domestic product. Currently about 11% of Malaysia"s GDP is from agriculture. Agricultural research in Malaysia started in the early 1900's, when Dunlop Research Station was established in 1910. This was followed by the establishment of Chemara Research Station in 1920. All these were established by the British and research was focused mainly on rubber.

1.2Problem Statement

In Malaysia there are many green houses built by the government, but farmers are unable to monitor the conditions greenhouse. Nowadays, various technologies have been used in industry sector. One project was be created to help the user to monitor the greenhouse. Based in this project it can be help the farmers to work under stress because they not need to go back and forth to water the plant and to ensure the condition of the plant and soil is good. And then this project can be reducing the time and energy to monitor the parameter greenhouse because this project can be control by mobile phone. At the same time it manually to monitor the greenhouse environment.

1.3 Objectives

Based on the problem statements discussed above, the objectives of this study are:

- i. To investigate current monitoring system for greenhouse.
- ii. To design an affordable monitoring greenhouse system using Internet of Things (IoT).
- iii. To analyze the performance between change environmental and impacts to the plants with the proposed system.

1.4 Scope

The scopes of this research work are established based on the objectives that mentioned. The greenhouse monitoring system is built to check the conditions and to control the parameter inside the greenhouse. Besides that Internet of Things (IoT) will be adopted as the communication devices with the users thus the greenhouse environment parameter can be update easily. Addition by using Internet of Things (IoT) the user can control the parameter of the greenhouse in long distance. Lastly, the nodeMCU microcontroller will set as the core controller for governing the input and output of this project.

1.5 Organization

This project focuses on development a system monitoring greenhouse. This report consists of five chapters. First, a short introduction to the problem, objective and scope are given in chapter one. Then, follow by chapter two literature reviews on existing methods adopted and various technologies that implemented in the previous project. In the mean times, the comparison regarding pros and cons will be discussed. Next, the components and method description that planned to use will be explained in chapter three. Furthermore, a brief of overview flow of the project may show here. In the chapter four, the results, including data tabulation and project analysis will be shown then discussed. Finally, conclusion and future recommendation will be emphasized in chapter five.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This chapter will review some journals from previous study that have been related to this topic. Development greenhouse monitoring system by using Internet of Things (IoT), is the final year project about to help farmer in the rural areas to be control and monitor of greenhouse.

2.1 Comparison Between Wi-Fi, Bluetooth And GSM

Bluetooth is a wireless technology used for short range data transmission from one device to another device which are both Bluetooth enabled. The transmission range is typically less than 10m and up to 100m besides for the latest model, the transmission range is from 40m up to 400m. Bluetooth works by sending and receiving radio waves in a band of different channel centred on 2.45GHz. Bluetooth devices can automatically detect and communicate with each other in a short distance.

Figure 2.1: Bluetooth module

Wifi is a technology for wireless local area networking based on IEEE 802.11 standards. Nowadays, wifi is widely used all around the world since it can transmit data for a long distance with a high speed of data transfer rate. With wifi, users can communicate with each other from all over the world. However, users have to pay every month for the use of wifi or data hotspot.

Figure 2.2: Wifi module

GSM is a digital telephony system with 2G technology that is widely used in Europe and other parts of the world. GSM is a cellular network and it works by transferring data to the base station and base station controller will transfer it to the receiver through server.

Figure 2.3: SIM900 GSM