

Faculty of Mechanical and Manufacturing Engineering Technology

DEVELOPMENT AND ANALYSIS OF BIODEGRADABLE PRODUCT FROM PINEAPPLE LEAF FIBRE

Norfaizal Bin Nuroddin

Bachelor's Degree of Manufacturing Engineering Technology (Product Design) with Honours

2018

C Universiti Teknikal Malaysia Melaka

DEVELOPMENT AND ANALYSIS OF BIODEGRADABLE PRODUCT FROM PINEAPPLE LEAF FIBRE

NORFAIZAL BIN NURODDIN

A thesis is submitted in fulfilment of the requirement for bachelor's degree of Manufacturing Engineering Technology (Product Design) with Honours

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT AND ANALYSIS OF BIODEGRADABLE PRODUCTFROM PINEAPPLE LEAF FIBRE

Sesi Pengajian: 2018/2019 Semester 1

Saya NORFAIZAL BIN NURODDIN mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

	TERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.		
X	TIDAK TERHAD			
Yang	benar,		Disahkan oleh penyelia:	
NOR	FAIZAL BIN	NURODDIN	MOHAMMAD KHALID BIN WAHID	
Alam	at Tetap:		Cop Rasmi Penyelia	
MDL	D 8392 LOT 2	290		
SEM	I DETACHED	ТҮРЕ Е		
PHAS	SE 4B BUKIT	PERDANA		
91100) LAHAD DA'	TU SABAH		
Tarik	h:		Tarikh:	
* 11/2 - 1	anoran DCM	ini SIILIT atau TE	PHAD sila lampirkan surat darinada nibak	
berkuasa perlu dik	aporani Pow a/organisasi be celaskan sebaga	rkenaan dengan meny ai SULIT atau TERHAD.	atakan sekali sebab dan tempoh laporan PSM ini	

DECLARATION

I declare this thesis entitle "Development and Analysis of Biodegradable Product from Pineapple Leaf Fibre" is the results of my own research except as cited in references. The thesis has not been accepted for any degree and is not currently submitted in candidature of any other degree.

Signature	
Name	NORFAIZAL BIN NURODDIN
_	
Date	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for awards of bachelor's degree of Manufacturing Engineering Technology (Product Design).

Signature	:	
Supervisor Name	:	MOHAMMAD KHALID BIN WAHID
Date	:	

DEDICATION

This final year I would like to dedicate to my beloved mother and father, also my family and friends on the encouragement and enthusiasm given to me. I wanted to dedicate to my supervisor on assist me to success this final year project. This project would not success without support from everybody around me.

ABSTRACT

Biodegradable product is product that produced from natural fibre source such as pineapple leaf fibre. Pineapple fruits is one of the popular and delicious fruit especially in Malaysia. The problem is people only uses fruit, while its leaves are disposed of. The pineapple leaves have been wasted material. Pineapple leaves that has been burned can causes air pollution. The usage of plastics in nowadays can causes landfill problem. The aim for this research is to study the potential application of pineapple leaf fibre in industries sectors, to develop a biodegradable product from pineapple leaf fibre and to anaylse the mechanical strength and biodegradable of pineapple leaf fibre. There are several rough stages that should be followed to complete this research which are identifying the problems of the research, have some research on the previous researchers that related, select the material and machines involved along the manufacturing process, design a product using SolidWorks software which is mini tray prototype, through a mechanical testing and biodegradable testing on the composite products and then manufacture mini tray. There are two mechanical testing conducted in this research which tensile test and biodegradable test. The highest values of tensile test strength for sample PALF reinforced PP was 8.32189 MPa., while for sample of PALF reinforced tapioca starch was 1.40927 MPa. The highest value of Young's Modulus for mixture of PALF with tapioca starch was 2890.40007 MPa, while for mixture of PALF with PP was 1088.41727 MPa. In biodegradable testing, the result shown there is a weight changes occurred for mixture of PALF reinforced with tapioca starch. But, for mixture of PALF reinforced PP, the biodegradable testing was conducted to proven either this mixture could be degraded in soil or vice versa. From the result, it proven that mixture of PALF with PP could not be degraded in soil due to PP characteristics which classified as polymer that can be degraded only through burning process. Bioplastics are degraded by various kind of microorganism. In this research, several things have been discussed such parameter of mixture, temperature and heating press time, types of mould used, and types of sample tensile test. The conclusion for this research is biodegradable product of mini tray from pineapple leaf fibre has successfully made, and the result of tensile test and biodegradable testing for every samples has been recorded successfully.

ABSTRAK

Produk 'biodegradable' ialah suatu produk yang dihasilkan daripada sumber fiber semula jadi seperti fibre daun nenas. Buah nenas merupakan salah satu buah-buahan yang terkenal dan sedap terutamanya di Malaysia. Masalah yang terjadi ialah manusia cuma mahukan buahnya, manakala daun nenas dibuang. Daun nenas telah menjadi bahan buangan. Daun nenas telah dibakar dan menyebabkan pencemaran udara. Penggunaan plastik pada hari ini boleh menyebabkan masalah pembuangan sampah. Tujuan kajian ini ialah untuk mengkaji kebolehupayaan serat daun nenas dalam pelbagai aplikasi untuk sector industri, menghasilkan produk biodegradable daripada serat daun nenas dan dan menganalisis kekuatan dan 'biodegradable' serat daun nenas. Terdapat beberapa susunan kasar yang perlu diikuti untuk melengkapkan kajian ini iaitu mengenalpasti masalah kajian, membuat kajian terhadap kajian pengkaji sebelum ini yang berkaitan dengan kajian, memilih bahanbahan dan mesin-mesin yang digunakan dalam proses pembuatan, mereka bentuk suatu product menggunakan perisian SolidWorks iaitu dulang mini, menjalankan ujian mekanikal dan ujian biodegradable terhadap produk komposit dan menghasilkan dulang mini.Terdapat dua ujian mekanikal yang dapat dilakukan dalam kajian ini iaitu ujian ketegangan dan ujian pelupusan. Nilai tertinggi kekuatan ujian tegangan untuk sample PALF campur PP adalah 8.32189 MPa, manakala untuk samel PALF campur tepung ubi adalah 1.40927 MPa. Nilai tertinggi modulus young untuk campuran PALF dengan tepung ubi adalah 2890.40007 MPa, manakala untuk campuran PALF dengan PP adalah 1088.41727 MPa. Dalam ujian 'biodegradable', hasil yang diperolehi menunjukkan terdapat beberapa perubahan untuk campuran PALF dengan tepung ubi. Tetapi, untuk campuran PALF dengan PP, ujian biodegradable yang dijalankan untuk membuktikan sama ada campuran ini boleh dilupus melalui tanah ataupun sebaliknya. Dari hasil yang diperolehi, ianya terbukti bahawa campuran PALF dengan PP tidak dapat dilupuskan kerana ciri-ciri PP yang diklasifikasikan sebagai polimer yanghanya boleh dihancurkan melalui pembakaran. Bioplastik dihancurkan oleh pelbagai jenis mikroorganisma. Dalam kajian ini, beberapa perkara telah dibincangkan seperti paramter campuran, suhu dan pemanasan masa menekan, jenis acuan yang digunakan dan jenis ujian tegangan untuk sampel. Kesimpulan penyelidikan ini ialah produk 'biodegradable' iaitu dulang kecil hasil dari serat daun nenas telah berjaya dihasilkan, hasil ujian tegangan dan ujian 'biodegradable' untuk setiap sampel berjaya direkodkan.

ACKNOWLEDGEMENT

In the name of Allah SWT, the Entirely Merciful, the Especially Merciful. All praise is due to Allah SWT. Salutations and greetings to the great Prophet of Prophet Muhammad SAW brought us to right path. I thank to Allah because giving me an opportunity to make this final year project successful.

I highly respect to my family, especially my mother Hadijah Binti Ismail and my father Haji Nuroddin Bin Abdul Rajin because support me from every step I throughout especially when I felt difficult in completing a certain process in this project.

I really appreciate my supervisor, Mr Mohammad Khalid Bin Wahid which provide me a detailed guidance and encouragement throughout the preparation and research of this project. He was a person who always support, patience and give me many suggestions to ensures reach my objective of this study.

Finally, I would like to thank to other individuals such as lecturers, also both of my panel for presentation, Mr Mohd Kamal bin Musa and Dr Mastura binti Mohammad Taha, assistant engineers and my friends for assistance whether directly or indirectly. Thanks for all contribution in this study, I hope this study may satisfy the requirement as needed in the format. Thank you very much.

TABLE OF CONTENT

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENT	iv
LIST OF TABLES	vii
LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE	xiii

CHAPTER

1.	INT	RODUC	CTION	1			
	1.1	Introd	uction	1			
	1.2	Proble	em statement	3			
	1.3	Object	Objectives				
	1.4	Scope	Scope of study				
	1.5	Summ	nary of methodology	4			
	1.6	Summ	nary	5			
2.	LIT	ERATU	RE REVIEW	6			
	2.1	Introd	uction	6			
	2.2	Natura	Natural fibre				
	2.3	Pinear	Pineapple leaf fibre				
		2.3.1	Structure of pineapple leaf fibres	10			
		2.3.2	Structure of Kenaf fibre	11			
		2.3.3	Varieties of six pineapple leaf fibre	12			
	2.4	Biode	gradable polymers	12			
	2.5	Natura	al sources as polymer matrix	13			
		2.5.1	Polypropylene composite	13			
		2.5.2	Starch	14			
		2.5.3	Tapioca based bioplastic resin, TBR	15			
	2.6	Applic	ation of pineapple leaf fibre	15			
		2.6.1	Application of pineapple leaf fibre for textile use	15			

iv C Universiti Teknikal Malaysia Melaka

		2.6.2	Ecological applications	16		
		2.6.3	Producing paper	18		
	2.7	Compo	site manufacturing technologies	19		
		2.7.1	Compression moulding	19		
		2.7.2	Hot pressing	20		
	2.8	Compar	rison between theoretical and experimental data	21		
		2.8.1	Tensile strength against PLF loading	21		
		2.8.2	Distinguish data of modulus young against PLF loading	22		
	2.9	Manuf	acturing process	22		
		2.9.1	PALF preparation	23		
		2.9.2	Composition between TBR and PALF composites	24		
	2.10	Tensile	properties	27		
		2.10.1	Tensile test formula	27		
		2.10.2	The tensile properties of pineapple leaf fibre	28		
		2.10.3	Tensile properties of pineapple leaf fibre combined with PP	30		
	2.11	Summa	ary	32		
3.	RES	ESEARCH METHODOLOGY				
	3.1	Introdu	iction	34		
		3.1.1	Flow chart of methodology	34		
	3.2	Identif	y the problems	36		
	3.3	Literature review				
	3.4	Raw M	laterial Selection	36		
		3.4.1	Nature fibre	38		
		3.4.2	Tapioca starch	39		
		3.4.3	Polypropylene (PP)	41		
		3.4.4	Glycerol	42		
	3.5	Process	s selection	44		
		3.5.1	Cleaning process	44		
		3.5.2	Crushing process	44		
	3.6	Manuf	acture process	45		
		3.6.1	Extraction process	45		
		3.6.2	Mixture	46		
		3.6.3	Design	50		
		3.6.4	CNC router	51		
		3.6.5	Hot compress machine	52		

	3.6.6	Drying oven machine	53	
3.7	Mecha	inical test	54	
	3.7.1	Tensile test	54	
3.8	Biodeg	gradable testing	56	
3.9	Summ	ary	57	
RES	ULT AN	ND DISCUSSION	58	
4.1	Introdu	uction	58	
4.2	Projec	t result	58	
	4.2.1	Samples of tensile tests	59	
	4.2.2	Parameter of hot press machine	61	
4.3	Prototy	pe	62	
4.4	Tensile	e test	66	
	4.4.1	Result of tensile test	68	
4.5	Biodeg	gradable test	73	
	4.5.1	Microstructural visual	79	
4.6	Discus	ssion	81	
	4.6.1	Parameter of mixture, temperature and heating press time	81	
	4.6.2	Mold design	83	
	4.6.3	Sample of tensile test	83	
4.7	Summ	ary	85	
CONCLUSION AND RECOMMENDATIONS				
5.1	Introdu	uction	86	
5.2	Conclu	usion	86	
5.3	Recom	nmendations	87	
5.4	Summ	ary	89	
FERE	NCES		90	
	 3.7 3.8 3.9 RES 4.1 4.2 4.3 4.4 4.5 4.6 4.7 CON 5.1 5.2 5.3 5.4 	3.6.6 3.7 Mecha 3.7.1 3.8 Biodeg 3.9 Summ RESULT AN 4.1 Introdu 4.2 Project 4.3 Prototy 4.4 Tensilet 4.5 Biodeg 4.4.1 4.5 4.5 Biodeg 4.5.1 4.6 4.6 Discuss 4.6.1 4.6.2 4.6.3 4.7 Summ CONCLUSI 5.1 Introdu 5.2 Conclusi 5.3 Recom 5.4 Summ	 3.6.6 Drying oven machine 3.7 Mechanical test 3.7.1 Tensile test 3.8 Biodegradable testing 3.9 Summary RESULT AND DISCUSSION 4.1 Introduction 4.2 Project result 4.2.1 Samples of tensile tests 4.2.2 Parameter of hot press machine 4.3 Prototype 4.4 Tensile test 4.5 Biodegradable test 4.5.1 Microstructural visual 4.6 Discussion 4.6.1 Parameter of mixture, temperature and heating press time 4.6.2 Mold design 4.6.3 Sample of tensile test 4.7 Summary CONCLUSION AND RECOMMENDATIONS 5.1 Introduction 5.2 Conclusion 5.3 Recommendations 5.4 Summary 	

APPENDICES

93

LIST OF TABLES

Table	Title	Page
2.1	Properties of natural fibre	9
2.2	Properties of different types of cultivars of pineapple leaf fibre	11
2.3	Mechanical properties of PALF	12
2.4	Mechanical properties of KF	12
2.5	Properties of both PALF and PP	15
2.6	Weight fraction between PALF and TBR	16
2.7	Application of natural fibre combined with composite material	19
2.8	Distinguish between commercial brake pad and fabricate brake	19
	pad using PALF	
2.9	Process of composition between TBR and PALF composites	28
3.1	Properties of tapioca starch	43
3.2	Physical properties of PP	45
3.3	Physical properties of glycerol	46
3.4	Dimension for specimen, followed ASTM D638	59
4.1	Parameter of Hot Press machine	64
4.2	Result of sample before and after tensile test	71

Table	Title	Page
4.3	Maximum load, ultimate tensile strength, tensile strain at maximum	72
	load, tensile extension at break and Young's modulus for mixture	
	PALF with tapioca starch	
4.4	Maximum load, ultimate tensile strength, tensile strain at maximum	73
	load, tensile extension at break and Young's modulus for mixture	
	PALF with polypropylene	
4.5	Samples buried for two weeks	77
4.6	Samples buried for 30 days	79
4.7	Parameter for mixture PALF reinforced tapioca starch	85
4.8	Parameter for mixture PALF reinforced polypropylene	86

LIST OF FIGURES

Figure	Title	Page
2.1	Arrangement of various natural fibre	8
2.2	Natural fibre of pineapple leaves	10
2.3	Natural and synthetic polymers	14
2.4	Polypropylene composite	15
2.5	Punjabi	17
2.6	Shoe	18
2.7	The beating graph versus tensile strength	20
2.8	Compression moulding machine	22
2.9	Transverse velocity for preferential flow	23
2.10	Distinguish of experimental and theoretical tensile strength against PLF	24
	loading	
2.11	Distinguish of experimental and theoretical young modulus against PLF	25
	loading	
2.12	Flow process of PALF preparation	26
2.13	Flow process of composition between TBR and PALF composites	27
2.14	Tensile modulus against volume fraction	33

Figure	Title	Page
2.15	Scanning electronic machine of tensile fracture surface of PALF-PP	34
	composite PP	
2.16	Distinguish between experimental and theoretical tensile	34
2.17	Tensile strength and elongation against volume fraction	35
3.1	Flow chart of process of manufacturing of biodegradable development	38
3.2	Flow chart of material selection and process involved in this study	40
3.3	Pineapple plant	41
3.4	Pineapple leaf fibre	42
3.5	Tapioca starch	43
3.6	Polypropylene	44
3.7	Glycerol	46
3.8	Crushing machine	48
3.9	Extraction machine	49
3.10	Fibre dried under sun	49
3.11	PALF after cutting process	50
3.12	PALF after blending process	51
3.13	PALF and tapioca starch	51

Figure	Title	Page
3.14	PALF and polypropylene	51
3.15	Preparation of PALF, tapioca starch, polypropylene and glycerol	51
3.16	Mixture of PALF and tapioca starch in mould	52
3.17	Mixture of PALF and PP in mould	52
3.18	Product of mini tray in isometric view and its drawing	53
3.19	Split of core and cavity	53
3.20	Core of mini tray and its drawing	54
3.21	Cavity of mini tray and its drawing	54
3.22	Mould from wood cutting by CNC router	55
3.23	Mould of core and cavity	55
3.24	Hot compression machine	56
3.25	Drying oven machine	56
3.26	Universal testing machine	58
3.27	Standard specification dimension for tested	58
4.1	Sample of tensile test in Solidwork software in isometric view	62
4.2	Dimension of tensile test sample by drawing in Solidwork software	63
4.3	Actual dimension from samples of both mixture	63

Figure	Title	Page	
4.4	Mini tray product from mixture of PALF reinforced tapioca		
	starch coated with adhesive		
4.5	Mini tray product from mixture of PALF reinforced tapioca starch	67	
	coated with resin		
4.6	Mini tray product from mixture of PALF reinforced polypropylene	68	
4.7	Sample of PALF mixed tapioca starch on tensile test machine	69	
4.8	Sample of PALF mixed polypropylene on tensile test machine	70	
4.9	Result of ultimate tensile strength, MPa	74	
4.10	Result of Young's modulus, MPa	75	
4.11	Samples for mixture of PALF with tapioca starch	76	
4.12	Samples for mixture of PALF with polypropylene	77	
4.13	Sample A	78	
4.14	Sample C	78	
4.15	Sample B after buried in soil for a month	80	
4.16	Sample D after buried in soil for a month	80	
4.17	Microstructural visual	82	
4.18	Images of four different samples either before and after biodegradable	84	
	tests which using magnifier size of 5x		
4.19	Actual dimension of dogbone for every samples	87	

xii C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

ABBREVIATIONS

PALF	-	Pineapple leaf fibre
KF	-	Kenaf fibre
РР	-	Polypropylene
UTM	-	Universal testing machine
TBR	-	Tapioca based bioplastics resin
g/cm³	-	Gram per centimetre of cube
MPa	-	Mega pascal
GPa	-	Giga pascal
N/mm ²	-	Newton per millimetre of square
g/mol	-	Gram per mol
°C	-	Celsius
°F	-	Fahrenheit
Т	-	Thickness
W	-	Width of narrow selection
L	-	Length of narrow selection
WO	-	Width overall

ABBREVIATIONS

LO	-	Length overall
G	-	Gauge length
D	-	Distance between grip
R	-	Radius of fillet

CHAPTER 1

INTRODUCTION

1.1 Introduction

Basically, one of the main sectors that plays role of economy in Malaysia was agricultural sector. The agricultural sector had become major contributor to national income and export earnings. In traditional, agricultural has been shipped away for processing. In order to encourage the economic to growth in stable in Malaysia, the variation of industries should be focused. In this South East Asia, Malaysia and Philippines are listed on top 11 countries as main nation that export the fresh pineapple in the world. Both countries contribute 15 percent export from amount of pineapple where 13 percent from Philippines while 2 percent from Malaysia. In Malaysia, there many types of pineapple such as N36, Morris, SARAWAK, Josapine and other more. Variety of N36 is more focused only in Malaysia, while varieties of Morris, SARAWAK and Josapine had interested the International market. In state of Malaysia, Johor, Sarawak and Negeri Sembilan are the state that had the cultivation of pineapple.

In general, pineapple plants are grown on the peat soil. In Johor, Pontian, Batu Pahat, Kluang and Muar are the area that had cultivation of pineapple plant. Johor had cultivated the pineapple in area of 8934 hectare and produced around 273,950 metric tonnes, RM 350.2 million or 68 percent of pineapple in Malaysia with the varieties of Morris, Josapine, MD2, SARAWAK and some more. Nowadays, one of the waste materials that need to be considered and used as much as possible is pineapple leaves. So, the natural fibre from pineapple leaves can be used in the industries as a material that has no involved any cost.

Pineapple is one of the popular and delicious fruit especially in Malaysia which is one of the nations that located in tropical and subtropical region of the world. Basically, bio composite material contains the combination of natural fibre and matrix material. Low cost, low density and low energy consumption are the advantages of using PALF to produce bio composite products. PALF can also be disposed of by burning that will be contributed to wasted material. Selection of pineapple leaves are important to be considered which is the first step and crucial for the preparation of fibre.

A young leaf of fibre is basically soft and weak. In order to obtain stronger and suitable leaves, moderately mature leaf from the Pineapple plant which have been grown partly are suitable for extraction process of pineapple leave to get its fibre. Extraction process can be done either using retting method or using mechanical method. Extraction process means that separation of fibre that obtained from pineapple leaves. There are some applications of using Pineapple leaf fibre, PALF in the industrial sector. PALF is basically used for producing textile fabrics. Nowadays, it can be seen and proven that PALF is used for producing textile, sport items, baggage, automobiles, cabinets, mats and other more. Other than that, PALF can be used for automotive components and some furniture due to the Young's modulus of PALF that had highest tensile strength when compared to another natural fibre.

1.2 Problem statement

Nowadays, natural fibre from Pineapple leaf fibre, PALF became a crucial material to be focused and considered from became a waste material. In agricultural sector, pineapple leaves are burned which will leads to waste the material that can be used for industrial sector. The problem is how to utilize the number of PALF from become waste material.

Air pollution is also a problem that need to be considered. In agricultural sector, burning the pineapple leaves are usually done to clear the land for cultivation the new pineapple plants. Air pollution can give bad effect to humans such as reduce visibility, make hazard safety and make a nuisance.

Landfill problem can be also considered as the problem in this research. The usage of plastic bags in nowadays is increased from day to another day. Plastics that not used are disposed of to the landfill which causes landfill problems. There are many effects of landfill problem which are causes toxins, leachate and greenhouse gas.

1.3 Objectives

In this project, there are three objectives that should be considered and be achieved. These are as follows.

- 1) To study potential application of pineapple leaf fibre in industries sectors.
- To develop a biodegradable product from PALF as natural fibre which are compounding respectively both of Polypropylene, PP material and tapioca starch as matrix material.
- 3) To analyse the mechanical strength and biodegradable of pineapple leaf fibre.