DESIGN AND DEVELOPMENT OF HAND TRACKING AUGMENTED REALITY APPLICATION FOR SMARTPHONE.

NG RONG SHEN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF HAND TRACKING AUGMENTED REALITY APPLICATION FOR SMARTPHONE.

NG RONG SHEN

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2018

C Universiti Teknikal Malaysia Melaka

UNIVERS فرون مريبق تيكنيك مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	SITI TEKNIKAL MALAYSIA MELAKA eraan elektronik dan kejuruteraan komputer prang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek : <u>DESIGN</u>	AND DEVELOPMENT OF HAND
TRACKI APPLICA Sesi Pengajian : 2017/201	NG AUGMENTED REALITY ATION FOR SMARTPHONE. <u>8</u>
Saya <u>LEE MAN BING</u> mengaku n ini disimpan di Perpustakaan dengar	nembenarkan laporan Projek Sarjana Muda n syarat-syarat kegunaan seperti berikut:
 Laporan adalah hakmilik Univer Perpustakaan dibenarkan membu Perpustakaan dibenarkan mempertukaran antara institusi penga Sila tandakan (✓): 	siti Teknikal Malaysia Melaka. at salinan untuk tujuan pengajian sahaja. abuat salinan laporan ini sebagai bahan jian tinggi.
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)
Alamat Tetap: <u>L-54 Taman Bukit</u> <u>Bidor</u> , <u>35500</u> , <u>Perak</u>	
Tarikh : 01 Januari 2010	Tarikh : 01 Januari 2010

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "Design and Development of Hand Tracking Augmented Reality Application for Smartphone." is the result of my own work except for quotes as cited in the references.

Signature:.....Author:NG RONG SHENDate:30th May 2018

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:	
Supervisor Name	:	DR NURULFAJAR BIN ABD. MANAP
Date	:	30 th May 2018

DEDICATION

This project is dedicated to my supervisor, Dr NurulFajar Bin Abd. Manap, who gave me an opportunity to have this title of project and provided a lot of suggestion to complete my project. This thesis is also dedicated to my parent who gave me supports to study at University Teknikal Malaysia Melaka (UTeM). Last but not least, this project is dedicated to my friends and also my inspiration mentor, Matthew Hallberg, who made tutorial about Augmented Reality. They gave me a lot of inspiration on my idea to conduct this project.

ABSTRACT

In this project, an augmented reality application is developed with hand tracking technology for smartphone. It allows users to track their hand with smartphone and interact with the virtual object in augmented reality system. Augmented reality is the current trends emerging technology which integrates computer generated virtual objects into real world. During Industrial Revolution 4.0, augmented reality will provide a great bright future to human life with real-time information and improve the efficiency of working procedure. The objectives of this project are to design and develop an algorithm to get the hand detection information from Leap Motion sensor for data transmission to smartphone, to integrate hand motion tracked by Leap Motion sensor and augmented reality (AR) system, and to implement the hand tracking augmented reality (AR) application in smartphone. The overall method to conduct this project is design the algorithm to transfer hand motion data from Leap Motion to smartphone and then integrate hand tracking technique and augmented reality system into smartphone.

ABSTRAK

Dalam Kajian ini, satu aplikasi realiti tambahan telah dicipta dengan teknologi pelacakan tangan untuk telefon bimbit. Aplikasi ini membolehkan pengguna melakukan pelacakan tangan dengan penggunan telefon bimbit dan juga berinteraksi dengan objek virtual dalam sistem realiti tambahan. Realiti tambahan merupakan satu teknologi tren pada masa kini yang mewujudkan objek virtual dalam dunia nyata. Dalam Industri Revolusi 4.0, realiti tambahan telah membawa masa depan yang cerah dalam hidup manusia dengan informasi masa nyata dan juga memperbaiki efisiensi dalam proses. Objektif dalam kajian ini ialah mencipta satu algoritma untuk mendapatkan data dari Leap Motion sensor dan mengirim ke telefon bimbit. Selain itu, objektif kedua ialah mengintegrasikan gerakan tangan yang dijejaki oleh Leap Motion sensor dengan sistem realiti tambahan. Objektif yang terakhir ialah mencipta satu aplikasi yang mengandungi teknologi penjejakan tangan dan sistem realiti tambahan untuk telefon bimbit. Kaedah keseluruhannya dalam kajian in ialah mencipta satu algoritma untuk mengirim data penjejakan tangan dari Leap Motion sensor ke telefon bimbit dan mengabungkan teknologi penjejakan tangan dengan sistem realiti tambahan dalam telefon bimbit.

ACKNOWLEDGEMENTS

This is my complete bachelor degree final year project in Universiti Teknikal Malaysia Malaka (UTeM). I am grateful to God for allowing me to proceed smoothly on this project. Besides, I would like to thank my supervisor, Dr. NurulFajar Bin Abd. Manap, who gave me an opportunity to do this interesting project, titled "Design and Development of Hand Tracking Augmented Reality Application for Smartphone" and also helped me with providing a lot of valuable suggestions and encouragement to complete my project. Furthermore, I would like to express my deepest appreciation to my parent because they gave me a lot of support on this project. Last but not least, I would like to thank my friends for giving me a lot of inspiration and ideas to make my project become more presentable.

TABLE OF CONTENTS

Declaration	
Approval	
Dedication	
Abstract	i
Abstrak	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	viii
List of Tables	xiii
List of Symbols and Abbreviations	xiv
List of Appendices	XV
CHAPTER 1 INTRODUCTION	1
1.1 Background	1

1.2	Problem Statement	2				
1.3	Objectives					
1.4	Scope of project					
1.5	Thesis Organization	4				
СНА	PTER 2 LITERATURE REVIEW	5				
2.1	Introduction	5				
2.2	Virtual Reality	6				
2.3	Augmented Reality					
2.4	History Background of Augmented Reality					
2.5	Types of Augmented Reality 16					
2.6	Leap Motion Sensor 22					
2.7	Unity 3D 2					
2.8	Vuforia Software Development Kit (SDK)	30				
2.9	Related Works	35				
	2.9.1 Physical Interaction in Augmented Environment	35				
	2.9.2 Integration of Leap Motion Controller On Mobile Devices For AR Applications	39				
	2.9.3 Android-based Augmented Reality to Enhance Education System	41				
2.10	Summary of Related Works	44				
2.11	Summary 4					

v

CHA	PTER	3 METHODOLOGY	47
3.1	Introduction 4'		
3.2	Description of the Block diagram of the flow in project		48
	3.2.1	Installing and setting up the Unity3D software and Leap Motion SDF in Laptop	K 49
	3.2.2	Design an algorithm for the User Datagram Protocol (UDP) web soch server. 51	ket
	3.2.3	Design an algorithm for the User Datagram Protocol (UDP) web soch client. 53	ket
	3.2.4	Import the required target data into the database prepared in Vuforia Developer Portal	54
	3.2.5	Import the Vuforia SDK and the data components from the database Unity3D	to 56
	3.2.6	Build the UDP server App for laptop and UDP client App for smartphone	57
	3.2.7	Test the accuracy and performance for the overall system	59
3.3	Proce	ss of Occlusion Test	60
3.4	The fl	ow of transmission of hand detection information from server to clien	it.
			03
3.5	Offset	t error of hand detection	66
3.6	Adjus virtua	tment on the distance between camera, detected hand information and l object	l 70

3.7 The integration of hand tracking technique and augmented reality system 72

3.8	Summary	74
CHAPTER 4 RESULT AND DISCUSSION 75		
4.1	Introduction	75
4.2	Occlusion Test	77
4.3	Transmission of hand detection information from server to client	79
4.4	Offset error of hand detection	80
4.5	Distance between camera, detected hand information and virtual object	82
4.6	Overall Result of the Project	85
4.7	Summary	86
СНА	PTER 5 CONCLUSION AND RECOMMENDATION	88
5.1	Introduction	88
5.2	Conclusion	88
5.3	Sustainability of project	90
5.4	Recommendation of future improvement	90
REF	ERENCES	92
APPI	ENDICE A	97
APPI	ENDICE B	100

LIST OF FIGURES

Figure 2.1: Virtual Reality	7
Figure 2.2: Reality-Virtuality Continuum diagram	8
Figure 2.3: Sensorama machine	9
Figure 2.4: The world's first head-mounted display (HMD) [4]	9
Figure 2.5: Videoplace developed by Myron Kruger	10
Figure 2.6: Generation-4 EyeTap invented by Steve Mann	10
Figure 2.7: The first AR system tested by Louis Rosenberg	11
Figure 2.8: A user with KARMA application in HMD could see instructions maintenance	on 11
Figure 2.9: The first handheld spatially aware augmented reality device	12
Figure 2.10: View inside the womb of a pregnant patient	13
Figure 2.11: Example Marker-based augmented reality system	13
Figure 2.12: The Touring Machine (left). The location information showed viewed through HMD (right)	and 14
Figure 2.13: Gameplay of ARQuake (left). ARQuake gaming equipment (right)	14
Figure 2.14: Logo of ARToolKit	15

Figure 2.15: The handheld AR system tracks optical marker in real time	15
Figure 2.16: Rocks marker image (left). The features in Rocks marker image (right) 17
Figure 2.17: Unbalanced features distribution	18
Figure 2.18: Less contrast image (left). Good contrast image (right)	18
Figure 2.19: Repetitive pattern checker board	18
Figure 2.20: Marker-based augmented reality	19
Figure 2.21: Project Tango authored by Google	19
Figure 2.22: Smart Terrain implementation	20
Figure 2.23: 3D objects tracking augmented reality on buildings	21
Figure 2.24: AR Tourist Guide	21
Figure 2.25: Leap Motion Controller	22
Figure 2.26: The heart of Leap Motion Controller	22
Figure 2.27: Interaction area of Leap Motion Controller	23
Figure 2.28: 3D hand models display	23
Figure 2.29: Pipeline approach of Leap Motion controller and Kinect sensors	25
Figure 2.30: Unity3D	26
Figure 2.31: User interface editor	27
Figure 2.32: "Game" window	28
Figure 2.33: The percentage of usage of three programming languages	29
Figure 2.34: Augmented reality SDKs feature comparison	30
Figure 2.35: Object Scanning target (left). The position of 3D object placed (right	nt) 34
Figure 2.36: Mutual occlusion between human hand and virtual object	37

Figure 2.37: Architecture concept for integration of Leap Motion controller smartphone	and 39
Figure 2.38: The overall architecture of this project	41
Figure 2.39: Drawing of tomato on blackboard (left). Virtual tomato model displa on the marker image (right)	ayed 42
Figure 3.1: Block diagram of the flow in project	48
Figure 3.2: Three versions of Unity3D software provided in Unity website	49
Figure 3.3: Leap Motion Orion SDK	50
Figure 3.4: V2 tracking Leap Motion SDK	50
Figure 3.5: Leap Motion Control Panel	51
Figure 3.6: Leap Motion Visualizer	51
Figure 3.7: The flow chart of UDP server algorithm design	52
Figure 3.8: The flow chart of UDP client algorithm design	53
Figure 3.9: Databases in Vuforia Developer Portal	54
Figure 3.10: Creating database	55
Figure 3.11: Image targets in a database	55
Figure 3.12: Adding images into a database	56
Figure 3.13: Downloading Vuforia SDK	57
Figure 3.14: Integration of Android Studio into Unity3D	58
Figure 3.15: Build Setting of APK file	58
Figure 3.16: Company Name, Product Name and Identification	59
Figure 3.17: "Transform" of the object	62
Figure 3.18: User interface in Unity3D	67
Figure 3.19: Canvas and EventSystem in Hierarchy window	67

Figure 3.20: Children of Canvas	68
Figure 3.21: Creation of buttons	68
Figure 3.22: On Click () function of the Button script	69
Figure 3.23: The graphic user interface (GUI)	69
Figure 3.24: Augmented reality scene in Unity3D	70
Figure 3.25: The Extended Tracking tool	71
Figure 3.26: The simple augmented reality system	72
Figure 3.27: The two LED scripts operated in the small green button	73
Figure 4.1: The view from palmar palm (Left) and dorsal palm (Right)	76
Figure 4.2: The development scene in Unity3D	77
Figure 4.3: A portion of data from the console of Unity3D	77
Figure 4.4: The bar chart of the accuracy of the occlusion test	78
Figure 4.5: The hand detection information from server	79
Figure 4.6: The hand detection information from client	80
Figure 4.7: Offset error of virtual hand model	81
Figure 4.8: The positions of Leap Motion sensor and the smartphone camera	81
Figure 4.9: Synchronized virtual hand model	82
Figure 4.10: Augmented reality virtual object before adjustment of distance	83
Figure 4.11: The virtual object after distance adjustment	83
Figure 4.12: Virtual object with lost tracked image target	84
Figure 4.13: The tracked hand and the virtual object in augmented smartphone app	reality 85
Figure 4.14: The switched on LED light	86

LIST OF TABLES

Table 2.1: Limitations on related works.	45	
Table 4.1: The accuracy of self-occlusion of each finger	78	

LIST OF SYMBOLS AND ABBREVIATIONS

AR	:	Augmented Reality
VR	:	Virtual Reality
HMD	:	Head-Mounted Display
KARMA	:	Knowledge-based Augmented Reality for Maintenance Assistance
LCD	:	Liquid-Crystal Display
GPS	:	Global Positioning System
SDK	:	Software Development Kit
PDA	:	Personal Digital Assistant
IDE	:	Integrated Development Environment
UDP	:	User Datagram Protocol
IP	:	Internet Protocol
GUI		Graphic User Interface

LIST OF APPENDICES

Appendix A: Server script	97
Appendix B: Client script	100

CHAPTER 1

INTRODUCTION

1.1 Background

In Industry 4.0, augmented reality is playing an important role as the future technology. It enables people to see and learn the information in a new view or in a new perspective. Augmented reality is a technology for users to experience that the supplement of computer-generated virtual information into the real world. In general, this technology "bring" the virtual object that generated by computer into the real world. Although augmented reality has been very famous in the past year, it still in very early stage of development and the existing devices are very expensive to be owned one for development. For example, Microsoft Hololens is one of the augmented reality device, but it was built by a large number of engineers with advanced technologies. Therefore, the cost of the device is much higher to be purchased. In order to experience the augmented reality in a cheaper way, this project will focus on using smartphone to establish an augmented reality environment. Additionally, the integration of smartphone and Leap Motion device can improve the experiences of users and allow users to interact with virtual objects in augmented reality environment. Leap motion is a device that recognizes hand gesture and sends the detection information to the computer. For instance, Leap Motion detects the hand that performs grabbing action when the users are trying to grab the virtual object.

1.2 Problem Statement

In general, the adoption of augmented reality is needed due to there are some limitations of the virtual reality. Consequently, augmented reality is playing important role as one of the technologies in Industry 4.0. For example, with the implementation of augmented reality in industry and manufacturing, technicians and engineers can receive real-time virtual information that appears in real world and interact with virtual information on the same time. This technology will bring a huge improvement on the working efficiency and also reduce the critical issues such as human errors, low productivity and safety. In augmented reality environment, the virtual object or virtual information can exist in the real world unlike the virtual reality that only allows the appearance of virtual object in computer-generated virtual environment. Since the development of Leap Motion, it allows users to interact with computer-generated virtual object in virtual reality environment. However, the development of Leap Motion is for the purpose that mainly use in virtual reality and not fully implemented in augmented reality. In addition, the connectivity of the Leap Motion is designed to be only connected to computer via a USB cable. Thus, the integration of augmented reality and Leap Motion on smartphone is limited.

1.3 Objectives

The aim of this project is to build a hand tracking augmented reality smartphone application by using smartphone, computer and Leap motion. The following objectives are needed to be achieved throughout this project.

- a) To design and develop the algorithm to get the hand detection information based on hand motion detected and tracked by Leap Motion for transmission of the data to smartphone.
- b) To integrate hand motion tracked by Leap Motion and augmented reality system.
- c) To develop and implement the hand tracking augmented reality application in smartphone.

1.4 Scope of project

In this project, the devices that needed in implementation of augmented reality system are mainly concerned on using smartphone, Leap Motion and laptop. The scope of this project is focus on the algorithm design of hand motion detecting and tracking by using Leap Motion in augmented reality system. This project is concentrated on the real-time hand tracking with interaction of the software used and