OVERALL LABOR EFFICIENCY STUDY USING MAYNARD OPERATIONAL SEQUENCE TECHNIQUE AT MANUFACTURING COMPANY

THIVIYA A/P GUNALAN B071510101

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2018 BACHELOR OF MANUFACTURING ENG. TECH. (PROCESS & TECHNOLOGY)

2018 UTeM

FACULTY OF MECHANICAL AND MANUFACTURING TECHNOLOGY

OVERALL LABOR EFFICIENCY STUDY USING MAYNARD OPERATIONAL SEQUENCE TECHNIQUE AT MANUFACTURING COMPANY

THIVIYA A/P GUNALAN

BACHELOR OF MANUFACTURING ENGINEERING TECHNOLOGY (PROCESS) WITH HONOURS

2018

OVERALL LABOR EFFICIENCY STUDY USING MAYNARD OPERATIONAL SEQUENCE TECHNIQUE AT MANUFACTURING COMPANY

THIVIYA A/P GUNALAN

A thesis submitted in fulfilment of the requirements for the bachelor mechanical manufacturing process

Faculty of Mechanical and Manufacturing Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: OVERALL LABOR EFFICIENCY STUDY USING MAYNARD OPERATIONAL SEQUENCE TECHNIQUE AT MANUFACTURING COMPANY

Sesi Pengajian: 2019

Saya **THIVIYA GUNALAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

	SULIT*	0 0	at yang berdarjah keselamatan atau sebagaimana yang termaktub dalam // 1972.
	TERHAD*		TERHAD yang telah ditentukan oleh na penyelidikan dijalankan.
	TIDAK TERHAD		
Yang benar,		D	Disahkan oleh penyelia:
STUDENT NAME Alamat Tetap:		S	SUPERVISOR NAME Cop Rasmi Penyelia
Tarikh		Т	`arikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I	hereby,	declared	this	report	entitle	"Overall	Labour	Efficiency	Study	Using	MOST
T	echnique	at Manufa	acturii	ng Com	ıpany'' i	s the resu	lts of my	own resea	arch exc	cept as	cited in
re	eferences.										
		Cian	ature								
		Sign	ature.	•				• • • • • • • • • • • • • • • • • • • •			
		Nan	ne :								
		Date	e:								

APPROVAL

This report is submitted to the Faculty of Mechanical & Manufacturing Engineering Technology of UTeM as a fractional satisfaction of the necessities for the level of Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honors. The individual from the supervisory is:

Signature:	
Supervisor:	

ABSTRAK

Industri pembuatan sangat mengutamakan produktivit. Terdapat pelbagai alternative yang tersedia untuk meningkatkan produktiviti. Oleh itu, kajian ini adalah mengenai peningakatan produktiviti dengan mengenal pasti penggunaan buruh semasa menjalankan aktiviti dengan menggunakan kaedah kajian kerja. Maynard Sequence Operasi Teknik (MOST) adalah masa alat pengukuran standard kerja yang telah ditetapkan untuk mengukur aktiviti pengendali di barisan pengeluaran industri pembuatan. Tujuannya adalah untuk memerhati rangkaian tugas yand dilaksanakan oleh pengendali,masa aktiviti-aktiviti ini dan menganalisis data menggunakan template MOST untuk menentukan penggunaan semasa pengendali. Daripada kajian ini,penambahbaikan dapat dibuat dengan mencadangkan kepada pihak pengurusan mengenai kawasan tumpuan untuk meningkatkan lagi produktiviti. Penambahbaikan apabila dilaksanakan akan membolehkan syarikat itu untuk mengurangkan kos operasi dan membolehkan ia mencapai kelebihan daya saing di kalangan pesaing lain.

ABSTRACT

Productivity is manufacturing industry's main concern. There are many alternatives available for improving productivity. Thus, this study is about improving productivity through identifying current labor utilization when carried out the activities which can be determined using work study methodology. Maynard Operational Sequence Technique (MOST) is the predetermined time standards work measurement tool used to measure labor's activities in a production line at a manufacturing company. The aim is to observe the sequence of tasks performed by operators, time for performed these activities and analyze the data using a MOST template to determine the current utilization of the labor. From this study, the value added and non –value added activities can also be determined in order to propose to the management on area to focus to further improve the productivity. The improvements when implemented will enable the company to reduce the operational costs and enable it to achieve competitive advantage among other competitors.

DEDICATION

For god, beloved parents that is my father Gunalan Veerasingam, my mother Kalaimalar Krishnan and my supervisor Dr. Rohana Binti Abdullah and all contributors especially the PHN Industry and Utem lecturers.

ACKNOWLEDGMENT

First and foremost, I might want express my thankful to GOD for gives a blessing to me to complete my final year project. With the end goal to finish my work, I have drawn in with numerous individuals in helping me particularly my supervisor, Dr. Rohana binti Abdullah. I wish to express my true gratefulness to my madam for her consolation, direction, advices and inspiration. Without her help and intrigue, this proposal would not have been equivalent to exhibit here. I likewise need to on account of every one of my companions that include immediate or roundabout to finish my final year project. Not overlooked, I might want to offer my thanks to all staff from PHN Company particularly En. Rosidan, En. Amir and En Hasbullah for being agreeable and not overlooking my whole companion for her help, counsel and data sharing. At last, I need recognize my genuine obligation and appreciation to my parents for their affection, dream and sacrifice for a mind-blowing duration. I can't fine the suitable word that could appropriately portray my gratefulness for their commitment, support and confidence in my capacity to accomplish my objectives. Without unending affection and persevering help from my family, I would not have been here.

TABLE OF CONTENT

	PAGES
DECLARATION	i
APPROVAL	ii
ABSTRAK	iii
ABSTRACT	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENT	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF APPENDICES	xiv
LIST ABBREVIATIONS, SYMBOLS AND NOMENCLATURES	XV
CHAPTER 1: INTRODUCTION	
1.0 Project Background	1
1.1 Problem Statement	2
1.2 Objective	3
1.3 Scope	3
1.4 Project Methodology	4
1.5 Expected Result	4
1.6 Structure of Report	5

CHAPTER 2: LITERATURE REVIEW

2.0	Introdu	uction	9
2.1	Manuf	acturing Performance	12
2.2	Flexib	pility	13
2.3	Quali	ity	13
2.4	Produc	etivity	14
	2.4.1	Productivity Challenge	15
	2.4.2	Measures of Productivity	15
	2.4.3	Partial Productivity Measure	15
	2.4.4	Multifactor Productivity Measure	16
	2.4.5	Benefits of Productivity	16
	2.4.6	Factor affecting Productivity	16
2.5	Producti	ivity Inputs	18
	2.5.1	Labor	18
		2.5.1.1 Labor Efficiency	18
	2.5.2	Machine	19
	2.5.3	Environment	19
	2.5.4	System/Process	20
2.6	Techniau	ue to study labor efficiency	20
	2.6.1	Work Study	20
		2.6.1.1 Method Study	21
		2.6.1.2 Work Measurement	24
2.7	Work M	easurement Tools	24
,	2.7.1	Historical Experience	24
	2.7.2	Time studies	25
	2.7.2	Work sampling	25
		Predetermined Motion Time System	26

2.8	Predetern	nined Time S	tandard Technique	26
	2.8.1	Method Time	Measurement (MTM)	26
	2.8.2	Modular Arra	angements of Predetermined Time Standard	29
	2.8.3	Work factor		29
	2.8.4	Maynard Ope	erational Sequence Technique (MOST)	30
		2.8.4.1	Basic MOST and notations	31
		2.8.4.2	Estimation of task time by basic MOST	32
2.9	Appli	ication		33
2.10	Sum	mary		45
СНАРТ	ER 3: M	IETHODOLO	OGY	
3.0	Introd	duction		46
3.1	Proje	ct Planning		47
3.2	Expla	nation of the	flowchart	49
	3.2.1	Define Pro	oject Title	49
	3.2.2	Literature	Review	49
	3.2.3	Factory V	isit	50
	3.2.4	Problem I	dentification	50
	3.2.5	Method S	tudy	51
		3.2.5.1	Proses Information	53
		3.2.5.2	Proses Mapping	53
		3.2.5.3	Data Collection	53
		3.2.5.4	Applied MOST Technique	54
		3.2.5.5	Data and Output Analysis	55
		3.2.5.6	Improvement and Recommendation	55
	3.2.6	Data And In	formation Gathered	55
	3.2.7	Data analysis	s using excel analysis	57
	3.2.8	Improvemen	t & Recommendation	57
	3.2.9	Discussion a	and Conclusion	57
3.3	Templa	ate Description	n	58

3.4	Developing Standard Time	59
	3.4.1 Formula for Move Sequence	60
	3.4.2 Calculation for Time Unit Measurement	60
	3.4.3 Normal Time	65
	3.4.4 Rating Factor	65
	3.4.5 Allowances Factor	66
	3.4.6 Standard Time	68
3.5	Overall Labor Effectiveness	68
3.6	Summary	69
СНАРТЬ	ER 4: RESULT AND DISCUSSION	
4.0	Introduction	70
4.1	Background of Company	71
4.2	Types of Parts in Dashboard Upper	71
4.3	Process Involved	73
	4.3.1 Storage area	76
	4.3.2 Dashboard Upper Comp Production (CIVIC)	76
	4.3.3 Assembly the part at the JIG	76
	4.3.4 Set the DASH UPR 10STN OPERATION	77
	4.3.5 First stage of Spot Welding	77
	4.3.6 Second stage of Spot Welding	77
	4.3.7 Quality Area	78
4.4	Result	78
4.5	Analyze of Result	84
	4.5.1 First Level of Analysis at Stage 10	84
	4.5.2 First Level of Analysis at Stage WSS	86

	4.5.3 Second Level of Ana	lysis at Stage 10	87
	4.5.4 Second Level of Ana	lysis of Stage WSS	90
4.6	Utilization of the Labor before	re Improvement	93
4.7	Improvement		95
	4.7.1 Improvement in Desi	gn of Trolley	95
	4.7.2 Improvement in Layo	out	97
	4.7.3 Improvement in Wor	k Balance Chart	99
4.8	Utilization of Labor after Imp	provement	101
4.9	Overall Labor Effectiveness	(OLE)	102
4.10	Summary		104
CHAPT	ER 5: CONCLUSION AND R	ECOMMENDATION	
5.0	Conclusion		105
5.1	Recommendation		106
REFER	ENCES		107
APPENI	OIX		110

LIST OF TABLES

TABLE	TITLE	PAGES
Table 2.1	The different factors that affecting the labor productivity	17
	in different country	
Table 2.2	Standard symbols used during the process documentation	22
Table 2.3	Parametic Notations in general move, controlled move and	32
	tool use.	
Table 3.1	Basic MOST Sequence Model	54
Table 3.2	MOST Sheet Table Template	56
Table 3.3	MOST sheet table description	56
Table 3.4	Explanation of Indicator	58
Table 3.5	General Move Sequences	60
Table 3.6	Controlled Move Sequences	61
Table 3.7	Tool Move Sequences	62
Table 3.8	Example of Data Collection	62
Table 4.1	Overall Result of Stage 10	79
Table 4.2	Overall Result of Stage WSS	81
Table 4.3	Result Based on Work Activities in Stage 10	85
Table 4.4	Result Based on Work Activities in Stage WSS	86
Table 4.5	Analyze of the Result in Stage 10	88
Table 4.6	Analyze of the Result in Stage WSS	91
Table 4.7	Comparison Based on Design of Trolley	96

LIST OF FIGURES

FIGU	RE	TITLE	PAGES
Figure	1.1	Image of Car Dashboard	2
Figure	1.2	Structure of Report	8
Figure	2.1	Framework of the Literature Review	11
Figure	2.2	The manufacturing system	14
Figure	2.3	The diagram shows how work study helps in increasing	21
		Productivity	
Figure	2.4	Define 19 separate basic movements	28
Figure	3.1	Flowchart of the development of the study	48
Figure	3.2	Flowchart of MOST	52
Figure	3.3	Developing Standard Time	59
Figure	4.1	Name of Parts	72
Figure	4.2	Production Layout	74
Figure	4.3	Flowchart of assembly process of Dashboard Upper Comp	75
Figure	4.4	Percentages of Work Activities in Stage 10	85
Figure	4.5	Percentages of Work Activities in Stage WSS	86
Figure	4.6	Analysis Setup Activity of Stage 10	89
Figure	4.7	Analysis Spot Welding Activity of Stage WSS	92
Figure	4.8	Separation of the Part	95
Figure	4.9	Layout of Dashboard Upper Comp Production	97
Figure	4.10	Layout of Dashboard Upper Comp after Improvement	98
Figure	4.11	Work Balance Chart	99
Figure	4.12	Change of the MOST Technique	101

LIST OF APPENDICES

APPENDIX	TITLE	PAGES
Appendix 1	Gantt Chart	110
Appendix 2	Turnitin	111
Appendix 3	Image of Stage 10	112
Appendix 4	Image of Stage WSS	113
Appendix 5	Image of S-GUN	114
Appendix 6	Result of Stage 10	115
Appendix 7	Result of Stage WSS	116
Appendix 8	Template of MOST Code	117
Appendix 9	Template of ILO Personal and Fatigue Allowance	118
Appendix 10	3D Drawing of Trolley	119
Appendix 11	Drawing of Trolley Assembly	120
Appendix 12	Drawing of Assemble Part of Frame	121
Appendix 13	Drawing of Assemble Part of Hinges	122
Appendix 14	Drawing of Assemble Part of Sleeving	123
Appendix 15	Drawing of Assemble Part of Wheel	124

LIST ABBREVIATIONS, SYMBOLS AND NOMENCLATURES

MOST - Maynard Operational Sequence Technique

MTM - Method Time Measurement

MODAPTS - Modular Arrangement of Predetermined Time Standard

TMU - Time Measurement Unit

TQM - Total Quality Management

WSS - Working Stand Station

Min - Minutes

sec - Second

hr - Hour

rf - Repeat Frequency

cf - Cycle Frequency

CHAPTER 1

INTRODUCTION

1.0 Project Background

In the manufacturing sector, labor and capital factor assume an essential part in contributing the economic growth. Efficient work has expanded profitability of this sector. Successful improvement not just covers development of physical work and capital yet additionally development of efficiency. In this case, to learn more about the manufacturing sector, the student carried out a final year project. As we know, manufacturing sector was one of big sector in industry. The main role in manufacturing sector was manufacturing performance. Thus, the overall project was started from the manufacturing performance in PHN Company. From the previous study, each of the company have a manufacturing performance based on their labor performance. This study carried by visited the PHN Company and know all the process in production line. PHN Company is a leading manufacturing specialist for metal-based automotive components, and the largest dies manufacturer in Malaysia Incorporated in October 1990, PHN Industry Sdn Bhd is actively involved in the production of medium-to-large automotive components for car makers Proton, Perodua, Toyota and Honda.

In PHN Industry at Alor Gajah, mainly produce the metal based automotive components for car makers Honda which are CIVIC, CR-V, Accord and BR-V. Based on this, each student conducted one process in production line. From that, the student can identify the problem and find a solution to overcome it. In this studies, it carried out about the overall labor efficiency in spot welding process in the dashboard upper comp of the

Honda CIVIC. This research can be remark the problem based on the labor performance in welding process. Figure 1.1 show the example of the dashboard of the Honda.



Figure 1.1 Image of Car Dashboard

The problem can be solve by collecting the data of labor performance which is cycle time and analysis it using MOST technique. MOST technique was came from the predetermined time standard. The MOST technique was applied by refer the bottleneck of the process. Regarding this, MOST technique is can easily solve the problem in production line and it is more preferable technique to achieve a good productivity.

1.1 Problem Statement

Productivity, labor, efficiency, quality and time management are among the key performance in the industry. Due to increasing the cost by the performance, the importance of the labor become a main priority in the industry. Nowadays, many companies start to eliminate waste in lean culture to become a systematic lean and to improve the productivity. There are some issues based on the observation at the PHN industry that lead to write this report. It is found that some tasks performed by labors are unnecessary and can be careless when doing the welding process. The unnecessary and careless in work will affect the cycle time and daily production rate. Besides that, some labor experienced muscle fatigue due to

the long standing when doing the welding process. This will cause the efficiency of work and company's productivity become slowly. Thus, unnecessary and careless in work will be eliminate automatically to improve the productivity of the company. From this, the process duration and normal time yield rate is essential to be utilized as a counter measure.

1.2 Objectives

The objectives of this study are as follows:

- i. To study the labor activities using MOST predetermined time standards.
- ii. To perform data analysis and determine current labor efficiency.
- iii. To propose improvement opportunities to improve the labor efficiency.

1.3 Scope

The scope of this project was focused on the labor performance in spot welding process in the dashboard of the Honda CIVIC. This research study about the Overall Labor Efficiency and the data was needed and collected at PHN Industry Sdn. Bhd. The data will be collected and applied MOST technique, and it will be analyzed manually based on the summary in excel template.

1.4 Project Methodology

Project Methodology started with two flowchart. One is refer the overall of the project and another is refer the method that used to conduct this research. In overall of the project, the flowchart started with define the title, literature review, visit the factory, identify the problem, research methodology, data and information gather, data analysis using excel analysis, improvement and recommendation and last is discussion and conclusion. But for the method flowchart, was started with orientation, problem identification, data collection, applied MOST technique, data and output analysis and last improvement and recommendation. This project methodology one of the important subchapter to utilize the method of MOST technique to achieved the objective.

1.5 Expected Result

Expected result based on the data collection of the labor activities in Dashboard Upper Comp production. In data collection, expected result can achieved based on the performed of the labor. This expected result will obtain by using the MOST technique. Through the result, improvement and recommendation will be implement in this research to achieve the objective.