REAL-TIME MODELLING AND IMPLEMENTATION OF A FLOOD OBSERVATORY SYSTEM (FOS) ON IOT PLATFORM

AMIERUL SYAZRUL AZRIL BIN AZMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

REAL-TIME MODELLING AND IMPLEMENTATION OF A FLOOD OBSERVATORY SYSTEM (FOS) ON IOT PLATFORM

AMIERUL SYAZRUL AZRIL BIN AZMAN

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2018

C) Universiti Teknikal Malaysia Melaka

	RSITI TEKNIKAL MALAYSIA MELAKA Iteraan elektronik dan kejuruteraan komputer Borang pengesahan status laporan PROJEK SARJANA MUDA II
Observa	me Modelling and Implementation of a Flood atory System (FOS) On IoT Platform
Saya AMIERUL SYAZRUL AZ	RIL BIN AZMAN mengaku membenarkan isimpan di Perpustakaan dengan syarat-syarat
kegunaan seperti berikut: 1. Laporan adalah hakmilik Unive	ersiti Teknikal Malaysia Melaka.
	buat salinan untuk tujuan pengajian sahaja. mbuat salinan laporan ini sebagai bahan gajian tinggi.
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)
Alamat Tetap: Lot 379, Loror Haji Sukim, Batu Ijok, 4560 Bestari Jay Selangor	Faculty of Electronics and Computer Engineering Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya
Tarikh : <u>30 November 2018</u>	3 Tarikh : 30 November 2018

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this report entitled "Real-Time Modelling and Implementation of a Flood Observatory System (FOS) On IoT Platform" is the result of my own work except for quotes as cited in the references.

Signature	4	
Author	:	Amierul Syazrul Azril Bin Azman
Date	0	30 November 2018

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature Dr. Siva Kumar Subramaniam Supervisor Name ÷ : 30 November 2018 Date

DEDICATION

Special dedication to my beloved family, supervisor, lecturers, and fellow friends

ABSTRACT

Flash and seasonal flooding events have always been a concern in many countries around the world, particularly in the tropical region with heavy rain falls. Thus, there is always a demanding urge to set an effective flood observatory system in line with the increasingly changing environment and growing population located in these floodprone regions. The key focus area of implementation is to prompt the detection to alert relevant authorities and public in the flood-prone region as events are recorded in the system through the IoT platform. The proposed model is designed and developed from a real-time measurement collected from measuring points. The real-time data on rainfall variation in the tropical regions are also collected for further analysis to strengthen the outcome of the proposed model, particularly in the early warning system. The collected data is then further used in the analysis and evaluation of flood prediction system for future flood mitigation plans by relevant authorities and research community.

ABSTRAK

Banjir kilat dan banjir bermusim sentiasa menjadi kebimbangan bagi kebanyakan negara, terutamanya di kawasan tropika yang sering ditimpa hujan yang lebat. Oleh itu, akan ada keperluan yang tinggi untuk melengkapi sistem pemerhatian banjir sehubungan dengan peningkatan perubahan persekitaran dan peningkatan populasi di kawasan yang cenderung untuk banjir berlaku. Implementasi sistem ini adalah untuk memudahkan pengesanan supaya pihak berkuasa yang berkaitan dan orang awam di kawasan yang cenderung untuk banjir lebih berwaspada sebagai kejadian yang direkodkan di dalam sistem melalui platform loT LoRa. Model yang diusulkan adalah direka dan dibina berdasarkan pengukuran masa sebenar yang diperolehi daripada titik pengukuran. Data masa sebenar untuk taburan hujan di kawasan tropika juga diperolehi untuk selanjutnya dianalisa untuk memberi sokongan kepada hasil model yang diusul, khususnya di dalam sistem amaran awal. Data yang diperolehi kemudiannya digunakan untuk analisa dan penilaian sistem peramalan banjir untuk rancangan awal oleh pihak berkuasa yang berkaitan dan komuniti penyelidik.

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest gratitude to my supervisor, Dr. Siva Kumar Subramaniam who has persistently and determinedly assisted me during the whole course of this final year project. It would have been very difficult to complete this project without the enthusiastic support, insight, and advice by him.

My special appreciation and thank my entire friend for their invaluable assistance towards this project. Most thankful for my family who has given me a support through my academic years.

TABLE OF CONTENTS

Declar	ation		
Appro	val		
Dedica	tion		
Abstra	et	Э.	
Abstra	k	ii.	
Ackno	wledgements	iii	
Table	of Contents	iv	
List of Figures		viii	
List of Tables		xi	
List of	Symbols and Abbreviations	xii	
СНАР	TER 1 INTRODUCTION	ì	
1.1	Introduction	1	
1.2 1	Problem Statement	4	
1.3 (Objectives	5	
1.4 5	Scope of Project	5	
1.5 1	Methodology	6	

1.6	Thesis Plan	7	
CHA	APTER 2 BACKGROUND STUDY	9	
2.1	Flood observatory system using GSM	9	
2.2	Flood observatory system using X-Bee	11	
2.3	Flood early-warning system using Integrated Information System	13	
2.4	Flood observatory system using WiFi	14	
2.5	Flood warning system using LiDAR and field survey data	15	
2.6	LoRa	16	
	2.6.1 Modulation parameter of LoRa	18	
	2.6.1.1 Code rate	18	
	2.6.1.2 Spreading factor	19	
	2.6.1.3 Bandwidth	21	
	2.6.2 Bit rate and symbol rate	22	
	2.6.3 Decoder sensitivity	23	
	2.6.4 Physical frame format	24	
	2.6.5 MAC classes of LoRa	28	
	2.6.6 Adaptive data rate	29	
СНА	APTER 3 METHODOLOGY	31	
3.1	Introduction	31	
3.2	Project planning	33	

 \mathbf{v}

3.3	Analysis of measurement of the station in Melaka	33	
3.4	Hardware development	34	
	3.4.1 Design of sensor circuit	34	
	3.4.1.1 Components used	36	
	3.4.2 The configuration of the LoRa gateway	38	
	3.4.2.1 Establishing a connection for LG01-P with the access point	38	
	3.4.2.2 Establishing an internet connection	40	
	3.4.3 Program Coding	42	
3.5	IoT platform development	43	
3.6	Integration of hardware and web platform	48	
3.7	Analysis of the LoRa parameter	51	
СНА	PTER 4 RESULTS AND DISCUSSION	52	
4.1	Data for water level and rainfall	52	
	4.1.1 The water level of the different station	53	
	4.1.2 Rainfall measurement of different station	54	
	4.1.3 Conclusion	56	
4.2	The result of LoRa parameter analysis	56	
	4.2.1 The sensitivity of the decoder	57	
	4.2.2 Time on air	58	
	4.2.3 Time for the data to be published to the platform	59	

vi

		Ň
	4.2.4 Conclusion	e
4.3	Comparison of LoRa, Zigbee, and WiFi	ć
СНА	APTER 5 CONCLUSION AND FUTURE WORKS	ć
5.1	Justification of Objectives	ć
5.2	Recommendation of future works	ć
	ERENCES	e

LIST OF FIGURES

Figure 1.1: The sensor node	2
Figure 1.2: LoRa gateway	3
Figure 1.3: Sensor node and gateway placement	3
Figure 1.4: Flowchart of the methodology of the project	7
Figure 2.1: Block diagram of the FOS	10
Figure 2.2: Block diagram of the designed WSN	11
Figure 2.3: Location of nodes on the map	12
Figure 2.4: River diagram of GIS map	13
Figure 2.5: System architecture of flood-early warning system	14
Figure 2.6: The receiver and the transmitter	15
Figure 2.7: Connection from LoRa nodes until end devices	16
Figure 2.8: Up-chirp and down-chirp waveform	17
Figure 2.9: CR versus data rate with corresponding bandwidth	19
Figure 2.10: Spreading Mechanism in LoRa	20
Figure 2.11: Data rates versus SF	21
Figure 2.12: Double Sided Spectrum Bandwidth adapted from	22
Figure 2.13: RSSI with different spreading factors	23
Figure 2.14: Packet elements of LoRa	25

Figure 2.15: Time on air of packet using the bandwidth of 125 kHz	26
Figure 2.16: Time on air of packet using the bandwidth of 250 kHz	27
Figure 2.17: Time on air of packet using the bandwidth of 500 kHz	27
Figure 2.18: Slot timing of class A, class B and class C	29
Figure 2.19: DR and RF output power with two different distance	30
Figure 3.1: Flowchart of the methodology of the project	32
Figure 3.2: Sensor circuit with Arduino as a controller	34
Figure 3.3: PCB layout of the sensor circuit	35
Figure 3.4: PCB of the sensor circuit	35
Figure 3.5: Measuring range using MB7070	36
Figure 3.6: DHT11 temperature and humidity sensor	36
Figure 3.7: Misol rain gauge	37
Figure 3.8: Dragino LoRa shield with the frequency of 915 MHz	37
Figure 3.9: Dragino LG01-P	38
Figure 3.10: WiFi connection list	39
Figure 3.11: Internet connection using WiFi client mode	39
Figure 3.12: The gateway is connected to the AP	40
Figure 3.13: Open SSH terminal using PuTTY software	41
Figure 3.14: Ping www.google.com using SSH terminal	41
Figure 3.15: Port used for Arduino Uno	42
Figure 3.16: Port used for the Arduino Yun of LG01-P gateway	43
Figure 3.17: Data flows from the gateway to the database or dashbo	ard 43
Figure 3.18: Node-Red flows editor	44

ix

Figure 3.19: The Mosquitto broker is opened	45	
Figure 3.20: When the Mosquitto broker is opened	45	
Figure 3.21: Subscribed topic	46	
Figure 3.22: MQTT topic publishing in the gateway sketch	46	
Figure 3.23: Topic distribution in the switch node	47	
Figure 3.24: Distributor node to the debug node	47	
Figure 3.25: The published data displayed in the debug window	47	
Figure 3.26: JSON node	48	
Figure 3.27: Sketch flow of the sensor node	49	
Figure 3.28: Sketch flow of the gateway	49	
Figure 3.29: SSH terminal using PuTTY	50	
Figure 4.1: Number of time of water level that had passed dangerous level	53	
Figure 4.2: Average rainfall per day each year at a different location in Melaka	55	
Figure 4.3: Increment of rainfall every year	55	
Figure 4.4: Snippet of the base station and telemetry station	56	
Figure 4.5: The experiment locations	57	
Figure 4.6: RSSI against distance using a spreading factor of 7, 9, 11 and 12	58	
Figure 4.7: Airtime when using a different spreading factor	59	
Figure 4.8: Total time taken for the sensor data to be published	60	
Figure 4.9: Time taken against different spreading factors	60	
Figure 4.10: The range testing using 620 m distance	61	
Figure 4.11: RSSI against the distance of 620 m	62	

x

LIST OF TABLES

Table 2.1: Code rate in LoRa	18
Table 2.2: Chip length according to the SF value	20
Table 2.3: Sensitivity (dBm) of SX1276 depending on the SF and bandwidth	23
Table 2.4: LoRa class A, class B, and class C	28
Table 4.1: Comparison of LoRa, Zigbee, and WiFi	63

xi

LIST OF SYMBOLS AND ABBREVIATIONS

ABP	÷	Activation by Personalization
ADR	:	Adaptive data rate
AP	Ť,	Access point
BW	:	Bandwidth
CR	:	Code rate
CRC	τ	Cyclic redundancy check
DEM	1	Digital Elevation Model
DR	÷	Data rate
FOS	÷	Flood Observatory System
GIS	:	Geographical information system
GPRS	÷	General Packet Radio Service
GPS	÷,	Global Positioning Systems
GSM	ě.	Global System for Mobile
IIS	£	Integrated information system
IoT	÷	Internet of Things
JPS	5	Department of Irrigation and Drainage
Lidar	5	Light Detection and Ranging
LoRa	;	Long Range
LOS	:	Line of sight

C Universiti Teknikal Malaysia Melaka

- LPWAN : Low power wireless network
- MCMC : Malaysian Communications and Multimedia Commission
- MQTT : Message Queuing Telemetry Transport
- PCB : Printed circuit board
- RSSI : Received Signal Strength Indicators
- SF : Spreading factor
- SMS : Short Message Service
- WLMS : Water Level Monitoring System

CHAPTER 1

INTRODUCTION

This chapter will discuss the brief of this project, problem statement, objectives, scope, methodology, and thesis plan for this project.

1.1 Introduction

According to Department of Irrigation and Drainage (JPS) Malaysia, a flood can be defined as a rising, overflowing, and swelling of water to the uncovered land. This commonly happens when there is heavy or seasonal rainfall, storm, ice melt, and tidal action. It also happens when there is unwanted disposal into the water sources and can cause a loss of lives and properties. There are three critical things that must be considered during a flood event which are time, cost and plan [3]. Logically, time and plan are always related to each other. Time is set up for the residents to estimate the possibilities for flooding to occur at the location through monitoring the water rise. If the water level reaches a moderate level, the authorities will take action using the available source. This process is timeconsuming so it is very crucial for the authorities to be more aware at this level. The rescuing time is also crucial because every second is important for the rescue team in order to rescue the residents.

This project consists of two devices, which are a LoRa sensor node (Figure 1.1) and a LoRa gateway (Figure 1.2). For the sensor node, it is powered up using a power bank and made up using Arduino, LoRa module, temperature sensor, humidity sensor, water level sensor, and tipping bucket. This sensor node is designed so that it can be deployed at the water source (Figure 1.3) to detect water level, temperature, humidity, and rainfall measurement. The data from the sensor node will be sent through the gateway to the cloud or database so that the authorities can monitor the data.

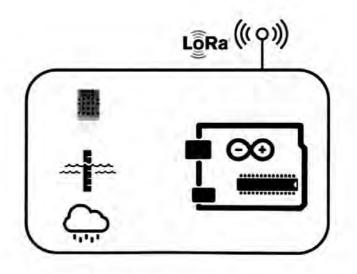


Figure 1.1: The sensor node

The gateway used is Dragino LoRa LG01P (Figure 1.2) and it will be placed at the data center (Figure 1.3). The usage of the LoRa gateway is crucial in this project because the transmitted data has to be received by the same language of the transceiver. The data is then translated and sent to the cloud using an Ethernet cable or WiFi connection.

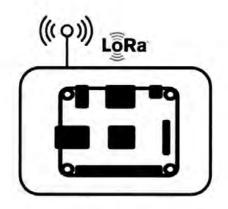


Figure 1.2: LoRa gateway

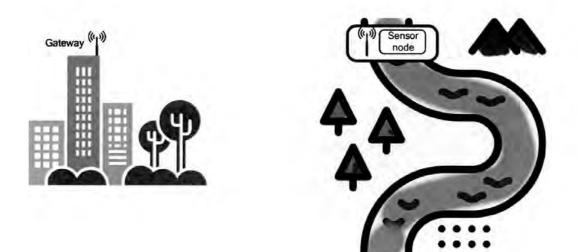


Figure 1.3: Sensor node and gateway placement

C Universiti Teknikal Malaysia Melaka

1.2 Problem Statement

The current web system or platform does not have the ability to save and view the previous history of the data such as water level and rainfall measurement [1]. There are several clouds that offer the data storing but the data will last only for several months. The proposed project should overcome this problem by using the internet platform that can provide the ability to view the data since the beginning of the measurement up to the present.

The internet platform used in the current flood monitoring system has a time delay to update the data of the water level. It is stated that on the website of JPS, the delay of the data displayed on the website might be up to more than 4 hours late. Therefore, the proposed project must eliminate this problem by using the internet platform that has no delay and can show the data in real-time.

The limited distance between the water source with the centralized station is one of the major challenges in developing flood observatory system [2]. Long-range wireless communication is required if the distance between the sensor node and the centralized monitoring station is too far from each other. The expected range between the gateway and the sensor node is 1 km

1.3 Objectives

- i. To analyze the relationship between the previous data of water level and rainfall measurement of different telemetry station in Melaka to find out the suitable parameter LoRa that will be applied accordingly
- To design and develop an internet-based flood planning system that can monitor data in real time using LoRa

1.4 Scope of Project

The type of flood covered is the seasonal flood but another type of flood will be mentioned throughout the thesis because there are several observatory systems that were implemented for a flash flood. The development of this project divided into two scopes of work, which is hardware development and internet platform development. The development of hardware, which is a LoRa node, and LoRa gateway requires the components and modules that allow them to communicate. The LoRa frequency band of the modules used in this project is in between 915 MHz to 923 MHz because frequency band of 869 MHz to 870 MHz is not allowed in Malaysia as mentioned in regulation stated by Malaysian Communications and Multimedia Commission (MCMC). Arduino will be used as a controller for the sensor node and Arduino Yun as the controller for a gateway. There are 4 inputs that will be used; a water level sensor, temperature sensor, humidity sensor, and a rainfall sensor. The non-contact water level sensor will be used instead of the contact type of water level (submerge).

The internet platform used in this project is an open source IoT platform, which is Node Red. Node Red is a simple tool used to connect and communicate the sensor

5