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ABSTRACT 

This project focuses on image quality assessment (/QA) especially when we 

have problems on how to assess the quality of an image without presence any of 

reference information. Blind !QA (BIQA) aims to appraise the perceptual quality of a 

distorted image without information regarding its reference image. In the past, Bf QA 

models usually predict the image quality by utilizing the transform-based quality 

predictive features. This approach, however, can be computationally expensive due to 

the need of image transformation process. This project attempts to alleviate this by 

developing a transform-free Bf QA model that operates based on statistical 

characteristics of two image local contrast operators namely Gradient Magnitude 

(GM) and Laplacian of Gaussian (LOG). Relevant quality predictive features were 

first extracted based on image local contrast operators ' statistical characteristics. A 

quality prediction model was then developed through support vector regressor (SVR) 

utilising the extracted features. The model 's performance was analysed through 

comparison with several available Bf QA models in terms of prediction accuracy, 

generalisation capability as well as computational requirements. 
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ABSTRAK 

Fokus projek ini adalah berkaitan dengan penilaian kualiti sesuatu imej (!QA) 

terutamanya bagi situasi dimana penilaian tersebut perlu dilakukan tanpa apa-apa 

maklumat rujukan. Penilaian kualiti imej tanpa maklumat rujukan (Bf QA) bertujuan 

untuk menilai persepsi kualiti tersebut ke alas kecacatan imej tersebut tanpa 

maklumat yang berkaitan dengan imej asal. Model-model Bf QA terdahulu sering 

meramal kualiti imej dengan menggunakan ciri ramalan kualiti yang memerlukan 

proses transformasi. Pendekatan ini bagaimanapun boleh dikira mahal disebabkan 

oleh keperluan proses transformasi. Projek ini cuba mengatasi masalah tersebut 

dengan membangunkan sebuah model BIQA tanpa transformasi yang broperasi 

berdasarkan statistic dua pengendali kontra tempatan sesuatu imej, iaitu 'Gradient 

Magnitude ' (GM) dan 'Laplacian of Gaussian ' (LOG). Projek ini bermula dengan 

mereka ciri ramalan kualiti berdasarkan statistik pengendali kontra tempatan 

tersebut. Kemudian, satu model ramalan kualiti dibangunkan melalui 'Support Vector 

Regression' (SVR) menggunakan ciri ramalan yang direka. Prestasi model dianalisis 

melalui perbandingan dengan beberapa model Bf QA yang ada dalam bentuk 

ketepatan ramalan, keupayaan generalisasi serta keperluan pengiraan. 
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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

As the technology in our country is fast developing, we can see there is an increase 

amount of digital images. It is very important to have reliable methods to evaluate the 

quality of these images. Image quality assessment (IQA) attempts to determine visual 

quality or analogically, the total of distortion in a given image. There are factors which 

determine image quality for examples, noise, dynamic range tone reproduction, colour 

accuracy, distortion, contrast, exposure accuracy, lateral chromatic aberration, 

sharpness, vignette, artifacts, etc. The distortions will occur in any digital image 

processing and it cannot be avoided. (IQA) had become important aspect in various 

computer vision and image processing application. Application that related with image 

quality assessment such as image acquisition, transmission, restoration and 
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enhancement, image search and retrieval, image recognition like an image tagging in 

the facebook. 

(IQA) is a basic but quite challenging problem in the field of image processing. 

Since the Human Visual System (HVS) is a definitive recipient and mediator of the 

visual substance, subjective assessment speaks to the most dependable quality 

assessment technique. Since human observer are definitive users especially in most of 

the multimedia applications, the most precise and also credible way to assessing the 

quality of images is through subjective assessment. However, subjective assessment is 

based on human observation mechanism and it take a long time and quite expensive, 

making it difficult to design in practical applications. Moreover, subjective 

experiments are more complicated by many factors including viewing distance, 

display device, lighting condition, subjects' vision ability, and subjects ' mood. 

Therefore, it is important to design mathematical models that are capable of predicting 

the quality evaluation of an average human observer. Particularly when ongoing 

calculation is wanted. To beat these restrictions, numerous IQA methods have been 

proposed over the past years to evaluate the quality ofimages in agreement with human 

quality perception automatically. 

Numerous IQA model have these objective IQA algorithm are beneficial in 

condition of repeatability and scalability rather than subjective assessment. The goal 

of objective IQA is to design mathematical models that can predict the quality of still 

image accurately and automatically by producing computer program. An ideal 

objective IQA method should be able to mimic the quality predictions of an average 

human vision system. So, it is important to design mathematical models that are 

capable of predicting the quality evaluation of an average human observer. 
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Existing objective IQA models can be classified into three categories based on the 

availability of the original (reference) image, which is considered to be distorted-free 

or perfect-quality image. There are Full-reference (FR), Reduce-reference (RR), and 

No-reference (NR). Full-reference (FR) model need full information of the reference 

image to predict the quality of the degraded or distorted images. For example Zhou 

Wang [I] develop a Structural Similarity Index (SSIM) method to handle color 

images, predict contrast change and mean shift. This algorithm is based on the concept 

that human visual system is highly adapted for extracting structural information from 

an image. So from the available image information in the original and distorted image, 

a quality measure is constructed. 

The (RR) algorithm provides a practical solution for automatic image quality 

evaluations in various applications where only need partial information of the 

reference image. In [2], Abdul Rehman developed one of the RR-I QA method based 

on SSIM that shown to be a good indicator of perceptual image quality. Specifically, 

they extract statistical features from a multiscale multiorientation divisive 

normalization transform and develop a distortion measure by following the philosophy 

in the construction of SSIM. 

The last classification of IQA is No Reference IQA or Blind IQA (BIQA) where 

there is no need of any information of the reference image. In many practical 

applications, information that related with the reference is unavailable, and thus BIQA 

algorithm are highly desired. For example Peng Ye [3] have propose BlQA model 

approach using visual codebooks. A visual codebook consisting of Gabor-filter-based 

local features extracted from local image patches is used to capture complex statistics 

of a natural image. This method does not assume any specific types of distortions. 
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However, when evaluating images with a particular type of distortion, it does require 

examples with the same or similar distortion for training. 

1.2 Objectives 

The aim of this project is to develope a BIQA model that operates on the image 

spatial domain in order to predict the quality of an image consistent with human 

perceptual measures. The aim can be achieved by fulfilling the following objectives : 

i. To extract relevant quality predictive features based on image local 

contrast operators' statistical characteristics. 

ii. To develop a quality prediction model through support vector regressor 

(SVR) utilising the extracted features. 

lll. To analyse the model 's performance through comparison with several 

available BIQA models in terms of prediction accuracy, generalisation 

capability as well as computational requirements. 

1.3 Scope 

This project will focus on the BIQA. In general, BIQA algorithms can be classified 

into two categories which are distortion-specific (DS) and non-distortion-specific 

(NDS), depending on the previous knowledge of the distortion type. Distortion that 

affects the image is assumed to be known in the OS BIQA, where it is quantified in 

isolation of other factors. Opposite to DS NR-IQA, the previous knowledge of 

distortion type is not considered by NOS BIQA algorithms. The quality score is given 

through assumption that the image to be assessed has similar distortion type to those 

in the training database. The project focus on NDS BIQA. 

This project wi ll use quality predictive features extracted in spatial domain derived 

from statistical properties of GM and LOG operators of an image. Using an adaptive 
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procedure to jointly normalize the GM and LOG features, and to show that the joint 

statistics of normalized GM and LOG features have desired aspect for the BIQA task. 

GM and LOG features are basic element that are commonly used to form image 

semantic structure. They are also strong features to predict image local quality. 

This project uses LIVE IQA Database [ 4] to train the model. The LIVE database 

consists of 982 images and 779 of the images is distorted images, generated from 29 

original images by processing them with 5 types of distortions at various levels. The 

distortions involved in the LIVE database are JPEG2000 compression (JP2K), JPEG 

compression (JPEG), additive white noise (WN), Gaussian blur (GB) and simulated 

fast fading Rayleigh channel (FF). 

Regression learning for this BIQA model is done by usmg Support Vector 

Regression (SVR). SVR is used because it is the simplest SVR and also can get the 

good performance. To assess the performance of a BIQA method, three scores that 

measure the consistency between the results of a BIQA model and the subjective 

DMOS/MOS scores are generally used which are Spearman rank order correlation 

coefficient (SRC), which measures the prediction monotonicity while the Pearson 

correlation coefficient (PCC) and the root mean squared error (RMSE), which measure 

the prediction accuracy. 

1.4 Problem statement 

Previous BIQA models often utilize transform-based quality predictive features to 

perform their quality prediction. This approach, however can be computationally 

expensive due to the need of image transformation process. Transform-based quality 

prediction is more complicated since it requires a lot of process. It also taking a lot of 

time to complete this process. So, this project attempts to alleviate this by developing 


