A DESIGN OF AUTOMATED SURGICAL ILLUMINATION SYSTEM

KEE SOEK FUAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

A DESIGN OF AUTOMATED SURGICAL ILLUMINATION SYSTEM

KEE SOEK FUAN

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2018

The UTEN Si Si i and si	TI TEKNIKAL MALAYSIA MELAKA Raan elektronik dan kejuruteraan komputer Rang pengesahan status laporan ROJEK SARJANA MUDA II
Tajuk Projek : <u>A Design</u>	n of Automated Surgical Illumination
Sesi Pengajian : <u>System</u> 2017/2018	
	nembenarkan laporan Projek Sarjana Muda syarat-syarat kegunaan seperti berikut:
-	at salinan untuk tujuan pengajian sahaja. Duat salinan laporan ini sebagai bahan
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
✓ TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENULIS)	(COP DAN TANBATANGAN PENYELIA)
Alamat Tetap: <u>25, Jalan Bakawali</u> <u>8, Taman Johor</u> <u>Jaya, 81100 Johor</u> <u>Bahru, Johor</u>	BR.SIGFEERA BUNTI AHMAD RADU Parayeroh Keneh Palali Berrupuan Behmnik ten Kejantasan Kenputer Universiti Telenikai Melayaia Melaka (UTRM) Hang Tush Jaya 75100 Burlan Tunggal, Melaka
Tarikh : <u>22 May 2018</u>	Tarikh : <u>22 May 2018</u>

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "A Design of Automated Surgical Illumination System" is the result of my own work except for quotes as cited in the references.

		Y
Signature	:	
Author	:	KEE SOEK FUAN
Date	:	22/5/2018

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature : Dr. Syafeeza binti Ahmad Radzi Supervisor Name : 22/5/2018 Date :

DEDICATION

Nobody gets something for nothing, every challenging work need self-efforts as well as guidance and support from family members. I dedicated this thesis to my parents and brothers who encouraged me to build my motivation towards success. "Keep trying no matter how hard it seems, it will get easier." This thesis is also dedicated to my supervisor, Dr. Syafeeza binti Ahmad Radzi who has been a constant source of knowledge and inspiration.

ABSTRACT

Surgical lights which consists of a single or multiple-light head assembly attached to a suspension arm are designed to illuminate surgical site. However, it was found out that the need of nurse or surgeon to move the surgical light manually might obstruct the surgical flow and cause contamination of instruments. Thus, the project is aimed to design an illumination system that will automatically track the movement of the hand of surgeon with specific color of. Yet, the project will mainly focus on the automation movement of light with the tracking of hand glove, not related to the specifications of light, operating table, operating room condition, design of suspension arm and others surgical procedure. An algorithm that could track the surgeon's hand movement is be designed using image processing. The best algorithm flow is determined to perform the color tracking process. The project will also include designing a surgical light which consists of a single light head attached with camera to illuminate surgical site that will not cast any shadows and provide high light intensity. Raspberry Pi is used with the Pi Camera to track the movement of the hand of surgeon through the program called OpenCV and the programming language, Python. At the end of the project, the algorithm of color object tracking is executed and the prototype of automation surgical illumination system will be produced.

ABSTRAK

Lampu pembedahan yang mengandungi satu atau berbilang lampu bersepadu telah direka untuk memberi pencahayaan yang mencukupi dan bayangan bebas. Namun, penciptaan ini masih memerlukan jururawat atau doktor bedah untuk mengubah posisi lampu secara manual. Senario ini akan menjejaskan process pembedahan dan mengakibatkan pencemaran instrumen. Oleh itu, projek ini bertujuan untuk mereka sistem lampu pembedahan yang dapat bergerak secara automatik dengan mengesan tangan doctor bedah yang memakai sarung tangan berwarna tertentu. Projek ini hanya focus pada pergerakan lampu pembedahan secara automatik dengan mengesan tangan doktor bedah, tidak melingkupi spesifikasi lampu, meja operasi, keadaan bilik operasi, rekaan penggantungan dan proses operasi. Algoritma yang dapat mengesan pergerakan sarung tangan doktor bedah direka melalui pemprosesan imej. Projek ini akan menghasilkan prototaip yang mempunyai satu lampu bersama kamera untuk memberikan pencahayaan yang mencukupi pada lokasi operasi. Raspberry Pi digunakan bersama Kamera Pi untuk mengesan pergerakan tangan doktor bedah melalui program, OpenCV dan bahasa pengaturcaraan, Python. Akhirnya, algoritma untuk mengesan warna sarung tangan dan prototaip sistem lampu pembedahan telah dihasilkan

ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to my supervisor, Dr. Syafeeza binti Ahmad Radzi, who gave me suggestions and valuable comments all the time. Her immense knowledge, patience and motivation helped me a lot over these two semesters. It is with her supervision that this work came into existence.

My sincere thanks also goes to co-supervisor, Dr. Khairuddin bin Osman who provided me the idea of producing prototype.

Last but not least, I would like to thank my parents and brothers for supporting me spiritually throughout the project. They are the ultimate role models.

TABLE OF CONTENTS

Decl	laration	
Арр	proval	
Ded	ication	
Abs	tract	i
Abs	trak	ii
Ack	nowledgements	iii
Tab	le of Contents	iv
List	of Figures	vi
List	List of Tables	
List	of Symbols and Abbreviations	xi
List	of Appendices	xii
CHA	APTER 1 INTRODUCTION	13
1.1	Project Background	13
1.2	Objectives	17
1.3	Problem Statement	17
1.4	Scope of Work	18
1.5	Brief Description of Methodology	19
1.6	Thesis Organization	20
CHA	APTER 2 BACKGROUND STUDY	21

2.1	Background Studies on Surgical Illumination System	21	
2.2	Different Method of Surgical Illumination System		
2.3	Background Studies on Color Tacking	41	
CH	APTER 3 METHODOLOGY	47	
3.1	Installation of Raspbian OS into Raspberry Pi 3	47	
3.2	Installation of OpenCV	48	
3.3	Color Tracking with Image Processing	56	
3.4	Forming Prototype	58	
	3.4.1 Controlling DC Motor	58	
	3.4.2 Controlling Servo Motor	60	
	3.4.3 Controlling Infrared Sensor Module with Motor (y-axis)	61	
	3.4.4 Connection of Circuit	65	
	3.4.5 Finalize Prototype	66	
CH	APTER 4 RESULTS AND DISCUSSION	67	
4.1	Operation of the Whole System	67	
4.2	Data Analysis	72	
CH	APTER 5 CONCLUSION AND FUTURE WORKS	78	
RE	FERENCES	80	
API	PENDICES	84	

LIST OF FIGURES

Figure 1.1.1	Ceiling Mounted Surgical Light	14
Figure 1.1.2	Wall Mounted Surgical Light	15
Figure 1.1.3	Floor Stand Surgical Light	15
Figure 1.1.4	Surgical Light Using Conventional Lamp	16
Figure 1.1.5	LED Surgical Light	16
Figure 2.1.1	Image of Mobile Surgical Spot Light	22
Figure 2.1.2	Image of Outpatient Surgical Light	22
Figure 2.1.3	Autoclaving Handle of Surgical Light	23
Figure 2.1.4	Reflector of Surgical Light	23
Figure 2.2.1	Foot Pedal Used in OR to Control Electrocautery Device	29
Figure 2.2.2	Multiple Lamps Arranged Parallel in Two Rows	31
Figure 2.2.3	Multiple Lamps Arranged in a Ring	31
Figure 2.2.4	Example of Active Marker that Emit Light	32
Figure 2.2.5	Example of Passive Marker that Reflect Light	33
Figure 2.2.6	Surgical Instruments Which Cause Light Reflection	33
Figure 2.2.7	Minimally Invasive Surgery	35
Figure 2.2.8	Surgical Team Following "Bare Below the Elbows"	36
	Policy by removing everything below elbow	
Figure 2.2.9	Holding of Handle to Dislocate the Light	39

Figure 2.3.1	Shrinking the Foreground during Erosion	44
Figure 2.3.2	Expanding the Foreground during Dilation	44
Figure 2.3.3	Relationship Between RGB and CMY	45
Figure 2.3.4	RGB Model in Cartesian Coordinate	45
Figure 2.3.5	HSV Color Model	46
Figure 3.1.1	Commands of Updating and Upgrading in Raspberry Pi	48
Figure 3.2.1	Command of Editing Configuration of Raspberry Pi	48
Figure 3.2.2	Appearance of Terminal After Command Figure 3.2.1	49
Figure 3.2.3	Command of Rebooting OS	49
Figure 3.2.4	Memory Space Expanded to 30G	49
Figure 3.2.5	Command of Installing CMake	49
Figure 3.2.6	Command of Installing Image and Video I/O Packages	50
Figure 3.2.7	Command of Installing GTK Development Library and	50
	Some Dependencies	
Figure 3.2.8	Command of Installing both Python 2.7 and Python 3	51
Figure 3.2.9	Command of Downloading OpenCV and	51
	"opencv_contrib" Zip Files	
Figure 3.2.10	Command of Installing Python Package Manager	51
Figure 3.2.11	Command of Installing & Updating Virtualenv and	52
	Virtualenvwrapper	
Figure 3.2.12	Command of Creating Python Virtual Environment	52
Figure 3.2.13	Command of Installing NumPy Package	53
Figure 3.2.14	Command of Formating Build Using CMake	53
Figure 3.2.15	Result of Implementing Command Figure 3.2.14	54

Figure 3.2.16	Command of Indicating Swapsize and Restarting the	54
	Service	
Figure 3.2.17	Command of Compiling OpenCV	54
Figure 3.2.18	Command of Installing OpenCV into Raspberry Pi 3	55
Figure 3.3.1	Coding of Importing Relevant Packages and Initializing	56
	Camera	
Figure 3.3.2	Coding of Converting the Image and Creating Filter	56
Figure 3.3.3	Coding of Filtering the Mask	57
Figure 3.3.4	Coding of bitwise_and	57
Figure 3.3.5	Coding of Marking the Specific Color	57
Figure 3.4.1.1	DC Geared Motor SPG 30	58
Figure 3.4.1.2	Picture of IC, L293D and its pin	58
Figure 3.4.1.3	Python Script to Control DC Motor	59
Figure 3.4.1.4	Timing Belt and Timing Pulley	60
Figure 3.4.2.1	Servo Motor	60
Figure 3.4.2.2	Formula Applied to Calculate Duty Cycle	60
Figure 3.4.2.3	Python Script to Control Servo Motor	61
Figure 3.4.3.1	Infrared Sensor Module	61
Figure 3.4.3.2	The Location of First Infrared Sensor Module in	62
	Prototype	
Figure 3.4.3.3	The Location of Second Infrared Sensor Module in	62
	Prototype	
Figure 3.4.3.4	Operation of Infrared Sensor Module	63
Figure 3.4.3.5	Python Script of Controlling Motor with Sensor Module	64
Figure 3.4.4.1	Connection of Components with Raspberry Pi	65

Figure 3.4.5.1	Finalize Prototype	66
Figure 4.1.1	Light Moving Downward and Stop when Sense the	68
	Presence of Hand	
Figure 4.1.2	Result of Color Tracking Including Yellow and Red Dots	68
Figure 4.1.3	Result of Tracking Both Hands	69
Figure 4.1.4	Light Moving Left or Right Based on Color Tracking	69
Figure 4.1.5	Servo Motor Rotate in 72° or 99°	70
Figure 4.1.6	Motor Moving Upwards to Standby Position and Servo	70
	Motor Rotate to 90°	
Figure 4.1.7	View of Camera at Different Positions After the	71
	Movement of Light	
Figure 4.1.8	Result of Tracking Light Purple Glove	72
Figure 4.2.1	Light Sensor Module	73
Figure 4.2.2	Attaching Light Sensor Module on the Color Glove	73
Figure 4.2.3	Before and After Focusing the Light Using Roll of Paper	73
Figure 4.2.4	Measurement of Light Intensity at 8 Different Locations	74
Figure 4.2.5	Graph of Light Intensity at 8 Different Locations	75
Figure 4.2.6	Graph of Increment of Light Intensity	75

LIST OF TABLES

Table 1.4.1	Scope of Work	18
Table 2.2.1	Different Method of Surgical Illumination System	24
Table 2.3.1	Different Method of Color Detection and Tracking	41

LIST OF SYMBOLS AND ABBREVIATIONS

CMY	:	Cyan Magenta Yellow
HSV	:	Hue Saturation Value
IMU	:	Inertial Measurement Unit
I/O	:	Input/Output
IR	:	Infrared
LDR	:	Light Dependent Resistors
LED	:	Light Emitting Diode
OR	:	Operating Room
OS	:	Operating System
RGB	:	Red Green Blue
GPIO	:	General Purpose Input/Output
DC	:	Direct Current
PWM	:	Pulse Width Modulation
OpenCV	:	Open Source Computer Vision Library
IC	:	Integrated Circuit

LIST OF APPENDICES

Appendix A: Coding of the Whole System

84

CHAPTER 1

INTRODUCTION

1.1 Project Background

Surgery is an important medical procedure carrying out in operating room (OR) to treat injuries or diseases by incision with equipment and instrument. There are many types of surgery such as elective surgery, cosmetic surgery, reconstructive surgery, transplant surgery and more. The operating room is a specialized environment, where strict adherence to standards and guidelines of practice, and principles of aseptic and technical know-how are paramount [1]. Every equipment, supply and instrument use in the operating room must be accurate and differentiate depend on the level of the complexity of the surgery. OR must be spacious enough to accommodate all the facilities such as the illumination system, operating table, anesthesia machine,

anesthesia supply cart, anesthesia professional chair, intravenous pole or table, case cart/equipment delivery system cart, prep stand, portable documentation station with chair, back instrument table, ring stand, two trash containers, soiled linen container, hazardous waste receptacle, mayo stand, kick bucket, surgical field suction attached to a wall, image viewers, and a sharps disposal receptacle. Beside, some space must be reserved for surgeon, scrub nurse/technician, circulating nurse and anesthesia care provider [2]. Thus, the recommended size of OR is 6.5 m x 6.5m x 3.5 m [3].

As one of the basic requirement of OR, illumination system is used to provide high quality, bright, comfortable and true color illumination of a wound. The light must illuminate the surgical site constantly even though the head or hands of surgeon is in between the surgical site and light source. [4]. The system can be adjusted in different aspects such as color temperature, color rendering index, light spot and illumination. The illumination system can be either ceiling mounted, wall mounted or on floor stand. The mounting configuration of on floor stand is found out to be inconvenient as the space around the operating table is very limited with surgeon, nurse and all the related apparatus.

Figure 1.1.1: Ceiling Mounted Surgical Light

Figure 1.1.2: Wall Mounted Surgical Light

Figure 1.1.3: Floor Stand Surgical Light

Traditionally, the type of lamp used is conventional lamps which containing a certain volume of halogen in an inert gas under a large hemispherical reflector. The light is focused to the specific focal point by reflector to illuminate the surgical site for optimal visualization of small, low contrast objects at different depths in incisions and body cavities. New lighting technology, Light Emitting Diode (LED) is also applied in the illumination system. LED comprises of small semiconductors create light through the phenomenon called electroluminescence when connected with electrical circuit. LED enhances the color performance of the surgical site and solves the problem of heat radiation as the light is cold and in low temperature [5].

Figure 1.1.4: Surgical Light Using Conventional Lamp

Figure 1.1.5: LED Surgical Light

1.2 Objectives

- To design a program of surgical illumination system by tracking the color of surgeon's glove.
- To prototype automated surgical illumination system.
- To analyze and evaluate performance of system in term of light intensity

1.3 Problem Statement

Illumination system did function well by providing sufficient lighting during surgery. However, in the real situation of surgery, the surgeons and nurse encounter inconvenience as they need to reposition the illumination system manually. In the study carried out by Mooijiwer. R (2011) with 98 OR-staff members, it was found out that the need to adjust the illumination system is high and that repositioning is cumbersome [6]. Although electric motors are provided with the light to ease the procedure of adjusting the position of the lamp, the position may sometime not accurate and fail to meet the requirement of surgeon. Thus, the surgeon may sometimes need to operate the light by releasing one hand from the operation area. If the illumination system is controlled by nurse, communication is necessary to locate the light spot. Both methods may distract surgeon and his or her attention might be lost on the operation. Consequently, the period of surgery and anesthesia duration of patient is prolonged which is not encouraged.

The need of nurse to move around in the operating room to reposition the light is not recommended as the risk of contamination of specific sterile instruments and surgical part will step up. Repositioning of light manually may sometime not accurate or fail to meet the requirement of surgeon due to communication error. Besides, the space of OR is very limited with all the apparatus, instruments and surgery team. The need of nurse to reposition the light should be eliminated to decrease the crowdedness around operating table.

1.4 Scope of Work

The project will focus essentially on the automatic movement of light attached with the camera by tracking specific color of surgeon's hand glove, not related to the specifications of light, operating table, operating room condition, design of suspension arm and others surgical procedure. Other aspects such as the production of illumination system and marketing of this system will not be covered in this project.

Table 1.4.1: Scope of Work

Type of hardware	Raspberry Pi 3 Model B, Pi Camera
Type of software	OpenCV
Type of tools	Servo Motor, DC Motors, Sensor Modules
Performance measure	The measurement of light intensity on the color glove
	after the movement of light
Database	Database develop in house