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ABSTRACT 

Hyperspectral unmixing (HU) is a very potential and increasingly popular 

preprocessing step for a wide range of hyperspectral application. Besides, it one of the 

important technique for hyperspectral data exploitation. Due to low spatial resolution 

of Hyperspectral cameras, microscopic material mixing, and multiple scattering, 

spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, 

accurate estimation is required using the hyperspectral unmixing algorithms. The 

linear mixing model is considered that assume hyperspectral image represented in the 

linear combination. However, this algorithm can perform all the chain involved in the 

hyperspectral unmixing process. The first chain is to the identification a set of pure 

spectral signature of the endmember. The second chain is to estimate the fractional 

abundances for each endmember for each pixel of the scene. These chains require an 

algorithm that highly desirable to avoid the propagation of error. The project is 

performed on a real HIS dataset as well on Airborne cuprite areas. Hence, this project 

attempt to propose a robust, stable, tractable, and accurate unmixing algorithm. The 

effectiveness of proposed method is confirmed through comparison with other 

algorithms, calculate the performance of unmixing by using spectral angle distance 

(SAD) under different noise level.
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ABSTRAK 

Hyperspectral unmixing (HU) adalah langkah preprocessing yang sangat 

berpotensi dan semakin popular untuk pelbagai aplikasi hyperspectral. Selain itu, ia 

merupakan salah satu teknik penting untuk eksploitasi data hyperspectral. Oleh kerana 

resolusi spatial kamera Hyperspectral yang rendah, pencampuran bahan mikroskopik, 

dan pelbagai hamburan, spektrum yang diukur oleh HSCs adalah campuran spektrum 

bahan di tempat kejadian. Oleh itu, anggaran tepat memerlukan algoritma 

hiperspectral unmixing. Model pencampuran linear dianggap sebagai menganggap 

imej hiperspectral yang ditunjukkan dalam gabungan linear. Walau bagaimanapun, 

algoritma ini boleh melakukan semua rantai yang terlibat dalam proses hiperspektral 

unmixing. Rantaian pertama adalah untuk mengenal pasti satu set tanda spektrum 

tulen endmember. Rantaian kedua adalah untuk menganggarkan jumlah pecahan bagi 

setiap endmember bagi setiap piksel tempat kejadian. Rantai ini memerlukan 

algoritma yang sangat diingini untuk mengelakkan penyebaran ralat. Projek ini 

dilakukan pada dataset HIS yang sebenar serta di kawasan cuprite Airborne. Oleh itu, 

percubaan projek ini mencadangkan algoritma yang mantap, stabil, boleh dikesan dan 

tepat. Keberkesanan kaedah yang dicadangkan disahkan melalui perbandingan dengan 
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algoritma lain, mengira prestasi unmixing dengan menggunakan jarak sudut spektrum 

(SAD) di bawah tahap bunyi yang berbeza.
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CHAPTER 1  

INTRODUCTION  

1.1 Background  

This chapter describes the background of the study, which is an introduction to the 

research in hyperspectral imaginary data in precision agriculture. Then it followed by 

the problem statement of the study, research objectives, the scope of work and 

organization of the thesis. 

1.2 Concept of Hyperspectral Imaging  

The imaging concept is divided into two type which is multispectral and 

hyperspectral. Hyperspectral imaging is also known as other spectral imaging. It 

collects and processes the information from across the electromagnetic 

spectrum[1][2]. Besides, it has been widely used in the various scientific field. This 

concept enables capture of an image simultaneously in hundreds of narrow continuous 
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spectral band. Moreover, the advantage of the hyperspectral imaging is to provide a 

large amount of data including of the complete spectrum of the ground object. The 

hyperspectral imaging is used in order to overcome the problem of resolution in part 

of the limitation of the sensors and the variability of the ground surface.  

The observation of one pixel may contain several different substances causing it 

to be a “mixed pixel”. Furthermore, to utilize the hyperspectral information, the mixed 

pixel must be decomposed into a set of constituent spectra called endmember 

signatures and their corresponding proportions called abundances[1][3]. With the 

consistent improvement of imaging spectroscopy, hyperspectral pictures gathered by 

imaging spectrometers have caught progressively rich spatial, spectral, and outspread 

data, which advantage the hypothetical research on hyperspectral information 

analysis.  

Nonetheless, the hyperspectral information basically contains a few hundreds of 

continuous spectral bands with limit wavelength intervals. However, there broadly 

exist mixed pixels attributable to the restricted spatial determination of the sensors of 

the sensor and the variation ground surface. Hence, the main goal is to make full 

utilization of the information. So, the hyperspectral unmixing has become an essential 

process, which deteriorates a mixed pixel into a gathering on constituent materials 

additionally called endmember and their relative proportions [4]. Hyperspectral 

unmixing (HU) alludes to any procedure that isolates the pixel spectra from a 

hyperspectral picture into a collection of constituent spectra, or spectral signatures, 

called endmembers and a set of fractional abundances, one set for each pixel[5]. The 

endmember are for the most part expected to represent the pure materials present in 
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the images and the set of abundances, or simply abundances at every pixel to represent 

to the level of each endmember that is available in the pixel [6][7] 

Besides, the hyperspectral imaging focusing on linear spectral unmixing is one of 

the essential tools to analyze remotely captured hyperspectral images form the specific 

scene [6]. The spectral unmixing is an essential strategy for hyperspectral information 

exploitation [1]. While this technique based on the suitable model signal. Generally, 

two model signal most used in the hyperspectral image is Linear Mixing Model and 

Nonlinear Mixing Model. Both signals have pros and cons but the Linear Mixing 

Model (LMM) has been the most prevalent device used to unmixing remotely detected 

hyperspectral information [8].  

The LMM accept that every pixel can be deciphered as a linear mix of a given 

number of pure materials (i.e., endmembers) with their corresponding divisions 

alluded to as abundances. Notwithstanding, the weak of ability to represent temporal 

and spatial fluctuation between and among endmembers has been recognized as a 

major weakness of LMM with exist endmembers. In reality, endmember changeability 

has gotten impressive consideration in the most recent decade. The previously 

mentioned techniques expect to utilize endmembers in a more flexible manner, 

potentially joining different occasions of a given endmember, however, are as yet in 

view of LMM. Then again, there are additionally two models which rise above the 

LMM in the objective of including the natural endmember variance[9][10].  
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Figure 1.1 Hyperspectral concept [1] 

Figure 1.1 outlines the measured data. Clearly, the data cube obtained from 

organizing the data into planes whereas each plane corresponds to radiance obtained 

through a spectral band for all pixels. Each spectral vector corresponds to the radiance 

acquired at a given scene for all spectral bands. 

 

 

Figure 1.2 Processing step [1] 
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Figure 1.2 demonstrates the processing step over a hyperspectral to perform the 

unmixing process that involving four main step which is an atmospheric correction, 

dimensionality reduction, unmixing, and inversion. 

The first step is considering the atmospheric correction of the radiance data cube. 

The atmosphere attenuates and scatters the light among the plane. Therefore, affects 

the radiance at the sensor. The atmospheric correction actually compensates for these 

impacts by changing radiance into reflectance, which is a characteristic property of 

the materials. We stress, however, that linear unmixing can be carried out directly on 

radiance data. 

The next step is data reduction after converting the property of data cube. The basic 

concept is the reduction the multitudinous amounts of data down to the meaningful 

parts. It affects the dimensionality of the data cube where space spanned by spectra 

from an image is generally much lower than an available number of bands. It aims at 

identifying related subspaces to facilitate dimensionality reduction, improving 

algorithm performance and complexity and data storage. Furthermore, if the linear 

mixture model demonstrates is precise, the number of endmembers is one less than 

equal to the signal subspace dimension is a crucial figure in hyperspectral unmixing. 

The next step is unmixing. Through the unmixing process, it consists of several 

steps especially identifying the endmembers in the scene and the fractional 

abundances at each pixel. Three basic approaches are used to address this problem. 

Each approach has a different method. First approaches refer to Geometrical 

approaches define that linearly mixed vectors are in a simplex set or in a positive cone. 

The second approach is the Statistical. This approach basically focuses on using 

parameter estimation techniques in order to predict endmember and abundance 


