INVESTIGATION OF HYPERSPECTRAL IMAGINARY DATA FOR MINERAL DETECTION

UMI FARRAHHANIM BINTI MOHD YUSOF

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INVESTIGATION OF HYPERSPECTRAL IMAGINARY DATA FOR MINERAL DETECTION

UMI FARRAHHANIM BINTI MOHD YUSOF

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

Investigation of Hyperspectral Imaginary Data for Mineral Detection 2017/2018

Sesi Pengajian

Saya <u>UMI FARRAHHAHNIM BINTI MOHD YUSOF</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

SULIT*

TERHAD*

TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

Disahkan oleh:

(TANDATANGAN PENULIS) Ala<u>mat Tetap: Kampung Paya</u> <u>Besar Alor Lik</u> <u>21500 Setiu,Bdr</u> <u>Permaisuri,</u> <u>Terengganu</u> Tarikh : <u>01 JUN 2018</u>

(COP DAN TANDATANGAN PENYELIA)

Tarikh : 01 JUN 2018

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "Investigation of Hyperspectral Imaginary Data for Mineral Detection" is the result of my own work except for quotes as cited in the references.

Signature	:	
Author	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:	
Supervisor Name	:	
Date	:	

DEDICATION

For everybody in my life that has support me to finish this project especially my dearest family, supervisor and friends

ABSTRACT

Hyperspectral unmixing (HU) is a very potential and increasingly popular preprocessing step for a wide range of hyperspectral application. Besides, it one of the important technique for hyperspectral data exploitation. Due to low spatial resolution of Hyperspectral cameras, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation is required using the hyperspectral unmixing algorithms. The linear mixing model is considered that assume hyperspectral image represented in the linear combination. However, this algorithm can perform all the chain involved in the hyperspectral unmixing process. The first chain is to the identification a set of pure spectral signature of the endmember. The second chain is to estimate the fractional abundances for each endmember for each pixel of the scene. These chains require an algorithm that highly desirable to avoid the propagation of error. The project is performed on a real HIS dataset as well on Airborne cuprite areas. Hence, this project attempt to propose a robust, stable, tractable, and accurate unmixing algorithm. The effectiveness of proposed method is confirmed through comparison with other algorithms, calculate the performance of unmixing by using spectral angle distance (SAD) under different noise level.

ABSTRAK

Hyperspectral unmixing (HU) adalah langkah preprocessing yang sangat berpotensi dan semakin popular untuk pelbagai aplikasi hyperspectral. Selain itu, ia merupakan salah satu teknik penting untuk eksploitasi data hyperspectral. Oleh kerana resolusi spatial kamera Hyperspectral yang rendah, pencampuran bahan mikroskopik, dan pelbagai hamburan, spektrum yang diukur oleh HSCs adalah campuran spektrum bahan di tempat kejadian. Oleh itu, anggaran tepat memerlukan algoritma hiperspectral unmixing. Model pencampuran linear dianggap sebagai menganggap imej hiperspectral yang ditunjukkan dalam gabungan linear. Walau bagaimanapun, algoritma ini boleh melakukan semua rantai yang terlibat dalam proses hiperspektral unmixing. Rantaian pertama adalah untuk mengenal pasti satu set tanda spektrum tulen endmember. Rantaian kedua adalah untuk menganggarkan jumlah pecahan bagi setiap endmember bagi setiap piksel tempat kejadian. Rantai ini memerlukan algoritma yang sangat diingini untuk mengelakkan penyebaran ralat. Projek ini dilakukan pada dataset HIS yang sebenar serta di kawasan cuprite Airborne. Oleh itu, percubaan projek ini mencadangkan algoritma yang mantap, stabil, boleh dikesan dan tepat. Keberkesanan kaedah yang dicadangkan disahkan melalui perbandingan dengan

ACKNOWLEDGEMENTS

Praise to Allah for His bless, I am able to complete my final year project smoothly. I am grateful and would like to express my sincere gratitude to my supervisor PM Dr Abd Majid bin Darsono for his invaluable guidance, continuous encouragement and constant support in making this project research possible. I really appreciate his guidance from the initial to the final level that enabled me to develop an understanding of this project thoroughly. Without her advice and assistance it would be a lot tougher to achieve completion

My sincere thanks go to all lecturers and members of the Faculty of Electronic and Computer Engineering, UTeM, who helped me in many ways and made my education journey at UTeM pleasant and unforgettable. Many thanks go to member classmate for their excellent co-operation, inspirations and supports during study this project.

Next, I also would like to extend my thankfulness to the most precious persons in my life, my father, mother and siblings. I acknowledge my sincere indebtedness and gratitude to my family for their love, dream and sacrifice throughout my life.

TABLE OF CONTENTS

Declaration	
Approval	i
Dedication	i
Abstract	i
Abstrak	ii
Acknowledgements	iv
Table of Contents	v
List of Figures	ix
List of Tables	xi
List of Symbols and Abbreviations	xii
List of Appendices	xiii
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Concept of Hyperspectral Imaging	1

1.3	Problem statement	7
1.4	Project Objective	8
1.5	Scope of work	8
1.6	Organization	8
CHA	APTER 2 literature review	10
2.1	Introduction	10
2.2	Hyperspectral Theory	10
2.3	Hyperspectral image classification	17
	2.3.1 Hyperspectral Image Analysis	22
	2.3.2 Parameter of hyperspectral instrument	23
2.4	Hyperspectral Imaging Vs. Multispectral Imaging	25
2.5	Spectral mixing modelling	27
	2.5.1 Linear Mixing Model (LMM)	29
	2.5.2 Nonlinear Mixing	31
2.6	Algorithms for Hyperspectral Unmixing	33
	2.6.1 N-FINDR algorithms	34
	2.6.2 CCA algorithms	34
	2.6.3 SA algorithms	35
	2.6.4 VCA algorithms	35
	2.6.5 SISAL Algorithm	36

vi

	2.6.6 NMF algorithm	36
2.7	Summary	37
СНА	CHAPTER 3 METHODOLOGY	
3.1	Introduction	38
3.2	Processing step	38
3.3	Flowchart methodology of the project	40
3.4	Signal Model of Hyperspectral Data	42
	3.4.1 Linear mixing model	42
	3.4.2 Features of Linear Mixing Model	44
3.5	Hyperspectral Unmixing Algorithm	45
	3.5.1 Dimension reduction	46
	3.5.2 Endmember determination	47
	3.5.3 A NMF Method for Linear Mixing	47
	3.5.4 Cost function	48
	3.5.5 Multiplicative update	50
3.6	The pseudocode algorithm	51
СНА	PTER 4 RESULTS AND DISCUSSION	54
4.1	Introduction	54
4.2	Data description	55
4.3	Parameter setting	56

vii

4.4	Evaluation measurements	56
4.5	Objective function	57
4.6	Reconstruction error	58
4.7	Algorithm comparison	59
4.8	Robustness to noise	61
4.9	Abundances estimation	72
4.10	Discussion	74
CHA	PTER 5 CONCLUSION AND FUTURE WORKS	76
5.1	Introduction	76
5.2	Summarize	76
5.3	Future works	78
REFI	ERENCES	79
APPH	ENDIX A	86
APPE	APPENDIX B	
APPE	APPENDIX C	

viii

LIST OF FIGURES

Figure 1.1 Hyperspectral concept [1]	4
Figure 1.2 Processing step [1]	4
Figure 2.1 Hyperspectral dimension[9]	11
Figure 2.2 (a) Hyperspectral data cube. (b) Hyperspectral vectors[9]	12
Figure 2.3 Reflected or Absorbed Concept [23].	15
Figure 2.4 Hyperspectral data cube of image[24]	16
Figure 2.5 Conversion processing of image[24].	17
Figure 2.6 Hyperspectral cube (a) Samson image, (b) Jasper Ridge image, (c)Us image and (d) Cuprite image[25].	rban 18
Figure 2.7 Samson characteristic (GT: <i>abundances</i> and GT: <i>endmembers</i>)[25].	18
Figure 2.8 Jasper Ridge and its ground truth[25].	19
Figure 2.9 Urban and its ground truths (4 endmember version)[25].	20
Figure 2.10 The ground truth for Cuprite (12 endmembers)[25].	21
Figure 2.11 Comparison of the reflection of light in multispectral hyperspectral[17]	and 26
Figure 2.12 Schematic view of three types of spectral mixing. (a) Linear mixing Nonlinear mixing. (c) Intimate mixture[26]	. (b) 28

Figure 2.13 Illustration of linear mixing radiation reflects from surface [2]	30
Figure 2.14 Illustration of nonlinear mixing where incident solar radiation encounters an intimate mixture that induces multiple bounces[2]	31
Figure 3.1 Flow chart of methodology	40
Figure 4.1 The ground truth 12 endmembers for cuprite data[25].	55
Figure 4.2 Objective function.	57
Figure 4.3 Reconstruction error.	58
Figure 4.4 Comparison of the five spectral signatures in cuprite scene with differ algorithm (a) CoNMF.(b) SISAL.(c) VCA.(d)NFINDR.	rent 60
Figure 4.5 Spectral signature for SNR 30 dB.	61
Figure 4.6 Spectral signature for SNR 40 dB.	62
Figure 4.7 Spectral signature for SNR 40 dB.	62
Figure 4.8 Comparison each endmember for different algorithm with SNR 30 dB.	64
Figure 4.9 Comparison each endmember for different algorithm with SNR 40 dB.	66
Figure 4.10 Comparison each endmember for different algorithm w SNR 40 dB.	vith 68
Figure 4.11 Abundances extraction obtained by CoNMF algorithms.	74

LIST OF TABLES

Table 2.1 Imaging Spectrometers sensors	23
Table 2.2 Parameters of eight hyperspectral instrument	24
Table 2.3 Different between hyperspectral and multispectral imaging	26
Table 3.1 Collaborative Nonnegative Matrix Factorization (CoNMF) algorithm	51
Table 4.1 reference spectral signature	68
Table 4.2 SAD and different noise level with SNR value 30, 40 dB	69
Table 4.3 SAD between five endmember for SNR 30dB	70
Table 4.4 SAD between five endmember for SNR 40dB	71
Table 4.5 SAD between five endmember for SNR 60dB	71

LIST OF SYMBOLS AND ABBREVIATIONS

HU	:	Hyperspectral Unmixing
NMF	:	Nonnegative Matrix Factorisation
LMM	:	Linear mixing model
NLLM	:	Nonlinear mixing model
PCA	:	Principle component analysis
CoNMF	:	Collaborative Nonnegative Matrix Factorisation
NFINDR	:	N-finder
SISAL	:	Simplex identification via variable splitting and augmented Lagrangian
LCTF	:	liquid-crystal tunable filter
HySime	:	Hyperspectral signal identification by minimum error
MV	:	Minimum volume
HSI	:	hyperspectral image
GPS	:	Global Positioning System
RTT	:	Radiative transfer theory
CCA	:	Convex cone analysis
SA	:	Annealing algorithm

LIST OF APPENDICES

Appendix A: Generate data by using different noise	86
Appendix B: Algorithms	88
Appendix C: Measure spectral angle distance (SAD)	91

CHAPTER 1

INTRODUCTION

1.1 Background

This chapter describes the background of the study, which is an introduction to the research in hyperspectral imaginary data in precision agriculture. Then it followed by the problem statement of the study, research objectives, the scope of work and organization of the thesis.

1.2 Concept of Hyperspectral Imaging

The imaging concept is divided into two type which is multispectral and hyperspectral. Hyperspectral imaging is also known as other spectral imaging. It collects and processes the information from across the electromagnetic spectrum[1][2]. Besides, it has been widely used in the various scientific field. This concept enables capture of an image simultaneously in hundreds of narrow continuous

spectral band. Moreover, the advantage of the hyperspectral imaging is to provide a large amount of data including of the complete spectrum of the ground object. The hyperspectral imaging is used in order to overcome the problem of resolution in part of the limitation of the sensors and the variability of the ground surface.

The observation of one pixel may contain several different substances causing it to be a "mixed pixel". Furthermore, to utilize the hyperspectral information, the mixed pixel must be decomposed into a set of constituent spectra called endmember signatures and their corresponding proportions called abundances[1][3]. With the consistent improvement of imaging spectroscopy, hyperspectral pictures gathered by imaging spectrometers have caught progressively rich spatial, spectral, and outspread data, which advantage the hypothetical research on hyperspectral information analysis.

Nonetheless, the hyperspectral information basically contains a few hundreds of continuous spectral bands with limit wavelength intervals. However, there broadly exist mixed pixels attributable to the restricted spatial determination of the sensors of the sensor and the variation ground surface. Hence, the main goal is to make full utilization of the information. So, the hyperspectral unmixing has become an essential process, which deteriorates a mixed pixel into a gathering on constituent materials additionally called endmember and their relative proportions [4]. Hyperspectral unmixing (HU) alludes to any procedure that isolates the pixel spectra from a hyperspectral picture into a collection of constituent spectra, or spectral signatures, called endmembers and a set of fractional abundances, one set for each pixel[5]. The endmember are for the most part expected to represent the pure materials present in

the images and the set of abundances, or simply abundances at every pixel to represent to the level of each endmember that is available in the pixel [6][7]

Besides, the hyperspectral imaging focusing on linear spectral unmixing is one of the essential tools to analyze remotely captured hyperspectral images form the specific scene [6]. The spectral unmixing is an essential strategy for hyperspectral information exploitation [1]. While this technique based on the suitable model signal. Generally, two model signal most used in the hyperspectral image is Linear Mixing Model and Nonlinear Mixing Model. Both signals have pros and cons but the Linear Mixing Model (LMM) has been the most prevalent device used to unmixing remotely detected hyperspectral information [8].

The LMM accept that every pixel can be deciphered as a linear mix of a given number of pure materials (i.e., endmembers) with their corresponding divisions alluded to as abundances. Notwithstanding, the weak of ability to represent temporal and spatial fluctuation between and among endmembers has been recognized as a major weakness of LMM with exist endmembers. In reality, endmember changeability has gotten impressive consideration in the most recent decade. The previously mentioned techniques expect to utilize endmembers in a more flexible manner, potentially joining different occasions of a given endmember, however, are as yet in view of LMM. Then again, there are additionally two models which rise above the LMM in the objective of including the natural endmember variance[9][10].

Figure 1.1 Hyperspectral concept [1]

Figure 1.1 outlines the measured data. Clearly, the data cube obtained from organizing the data into planes whereas each plane corresponds to radiance obtained through a spectral band for all pixels. Each spectral vector corresponds to the radiance acquired at a given scene for all spectral bands.

Figure 1.2 Processing step [1]

Figure 1.2 demonstrates the processing step over a hyperspectral to perform the unmixing process that involving four main step which is an atmospheric correction, dimensionality reduction, unmixing, and inversion.

The first step is considering the atmospheric correction of the radiance data cube. The atmosphere attenuates and scatters the light among the plane. Therefore, affects the radiance at the sensor. The atmospheric correction actually compensates for these impacts by changing radiance into reflectance, which is a characteristic property of the materials. We stress, however, that linear unmixing can be carried out directly on radiance data.

The next step is data reduction after converting the property of data cube. The basic concept is the reduction the multitudinous amounts of data down to the meaningful parts. It affects the dimensionality of the data cube where space spanned by spectra from an image is generally much lower than an available number of bands. It aims at identifying related subspaces to facilitate dimensionality reduction, improving algorithm performance and complexity and data storage. Furthermore, if the linear mixture model demonstrates is precise, the number of endmembers is one less than equal to the signal subspace dimension is a crucial figure in hyperspectral unmixing.

The next step is unmixing. Through the unmixing process, it consists of several steps especially identifying the endmembers in the scene and the fractional abundances at each pixel. Three basic approaches are used to address this problem. Each approach has a different method. First approaches refer to Geometrical approaches define that linearly mixed vectors are in a simplex set or in a positive cone. The second approach is the Statistical. This approach basically focuses on using parameter estimation techniques in order to predict endmember and abundance