PERFORMANCE ANALYSIS OF STACKED CAPACITIVE AND MULTI-LOOP ANTENNAS FOR LIGHTNING REMOTE SENSING APPLICATION

ONG JIN YING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

PERFORMANCE ANALYSIS OF STACKED CAPACITIVE AND MULTI-LOOP ANTENNAS FOR LIGHTNING REMOTE SENSING APPLICATION

ONG JIN YING

This report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

PERFORMANCE ANALYSIS OF STACKED CAPACITIVE AND MULTI-LOOP ANTENNAS FOR LIGHTNING REMOTE SENSING APPLICATION 2017/2018

Sesi Pengajian :

Saya <u>ONG JIN YING</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (\checkmark):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

(TANDAT PENULIS)

Alamat Tetap: PT 6662, Jalan

Makmur 2, Taman

Makmur, 45300

Sungai Besar,

Selangor

28 May 2018

SULIT*

TERHAD*

TIDAK TERHAD

b

(COP DAN TANDATANGAN PENYELIA)

Disahkan oleh:

Dr. Mahi Ridgan Bir Alrund Pensyarah Kanan Pensyarah Kanan Pensyarah Kanan Pensyarah Kalautan Kolaka (UTahi) Hang Tuah Jaya /6109 Durian Tunggal, Melaka

Tarikh :

Tarikh : 28 May 2018

🔘 Universiti Teknikal Malaysia Melaka

DECLARATION

2

I declare that this report entitled "Performance Analysis of Stacked Capacitive and Multi-Loop Antennas for Lightning Remote Sensing Application" is the result of my own work except for quotes as cited in the references.

Signature	:	Fight
Author	:	ONG JIN YING
Date	;	28 3 2018

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature

1

1

Supervisor Name

DR MOHD RIDUAN AHMAD

Date

28/5/2018

:

:

:

DEDICATION

The completion of this project is not only by hard work but also guidance and support from so many peoples. Their contribution sincerely appreciated. I dedicated this works to my parents and family. "A truly great mentor hard to find, difficult to part with, impossible to forget", this project is dedicated to the man, Dr. Mohd Riduan Ahmad who taught me important lessons, and always be continual source of knowledge and inspiration..

ABSTRACT

Antennas are the important elements in the lightning detection system. To improve performance of the lightning detection system, it is so necessary to improve the efficiency of the antennas. There are two types of antennas used in the system which are capacitive antenna for electric field sensing and loop antenna for magnetic field sensing. Both of these antennas are big in size and causing inconvenient during set up. Thus, small and portable antennas are designed. It is so important to remain or improve the sensitivity of the antennas even though it is small in size. Stacking method is used in capacitive antenna by increase copper plate layer in between the parallel plate antenna while sensitivity of loop antennas is increased by increasing the number of turns of the antennas. After prototype the multi-stacked capacitive antenna and multi-loop antennas, performance analysis is carried out. Performances of the antennas are compared using CST simulation and hardware set up. Multistacked capacitive antenna is compared with the single plate antenna and found that the performance of the antenna increases as the stacked number increases. On the other hand, multi-loop antennas are also set up for real time lightning detection. Multi-loop antennas are still able to detect the direction of the magnetic field emitted by the lightning events even though the size becomes small.

ABSTRAK

Antena merupakan elemen yang penting dalam sistem pengesanan kilat. Terdapat dua jenis antena dalam sistem pengesanan kilat iaitu antena kapasitif dan antena gelung. Antena kapasitif digunakan sebagai penderia untuk medan elektrik manakala antena gelung berperanan sebagai penderia medan magnet. Oleh kerana kedua-dua antena ini bersaiz besar maka selalu menjadi masalah untuk membawa mahupun memasang antena tersebut. Oleh kerana itu, kecekapan antena harus ditingkatkan dan ditambahbaik supaya masalah saiz antena boleh diselesaikan. Pertama sekali, lapisan tembaga dalam antena kapasitif ditambah supaya dapat meningkatkan nilai kapasitans di antara lapisan atas dan bawah sekali. Peningkatan nilai kapasitans boleh meningkatkan medan elektrik. Di sebaliknya, antena gelung perlu menambah nombor kiraan gelung supaya meningkatkan kekuatan medan magnet yang diterima. Selepas membuat prototaip kedua-dua antena, analisa telah dibuat melalui simulator CST dan juga melalui pengukuran sebenar di lapangan. Sebagai kesimpulan, antena kapasitans yang berlapisan adalah berfungsi lagi baik berbanding yang biasa manakala prestasi antena gelung juga ditambahbaik dengan meningkatkan nombor kiraan gelung.

ACKNOWLEDGEMENTS

I am really grateful to my family especially my parents for their support, care and understanding. I would like to thank my supervisor Dr. Mohd Riduan Ahmad who always become my guidance and help me through the bridge of theory and practical work. His passion on research and persistence on knowledge influence deeply my university life. With his supervision, this project comes to existence.

TABLE OF CONTENTS

Declaration	
Approval	
Dedication	i
Abstract	i
Abstrak	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	viii
List of Tables	xii
List of Symbols and Abbreviations	xiii
List of appendices	xiv
CHAPTER 1 INTRODUCTION	1
1.1 Background	1

1.2	Problem Statement	3
1.3	Objective / Aim	4
1.4	Scope	4
1.5	Project Structure	6
CHA	APTER 2 Literature Review	8
2.1	Lightning Flashes	8
2.2	Lightning Detection System	11
2.3	Capacitive Antennas	13
	2.3.1 Stacked Capacitive Antenna	15
2.4	Loop Antenna	16
	2.4.1 Multi Loop Antenna	19
2.5	Picoscope	21
2.6	Computer Simulation Technology (CST)	21
2.7	Summary of Related Work	22
CHA	APTER 3 METHODOLOGY	23
3.1	Introduction	23
3.2	Antennas Design	24
3.3	Multi-stacked Capacitive Antenna	25
	3.3.1 CST Design and Method of Result Analysis	26
	3.3.2 Hardware Design	35

v

	3.3.3 Method of Data Collect and Analysis	38
3.4	Multi-loop Antenna	40
	3.4.1 CST Design and Simulation Result Analysis	41
	3.4.2 Hardware Design	47
	3.4.3 Method of Data Analysis	50
СНА	PTER 4 RESULTS AND DISCUSSION	52
4.1	Introduction	52
4.2	CST Result and Discussion for Capacitive Antenna	53
	4.2.1 Relationship between Area of Parallel Plate Antenna and E-field Strength	53
	4.2.2 Relationship between Air Gap Distance of the Plates and E-field	57
	4.2.3 Relationship between Number of Copper Plate Slot and E-field	58
4.3	Hardware Result and Discussion for Stacked Capacitive Antenna	62
4.4	Simulation Result and Discussion for Loop Antenna	66
	4.4.1 Relationship between Cross Sectional Area of Loop Antenna and Induced E-field	67
	4.4.2 Relationship between Number of Loop Antenna and Induced E-field	70
4.5	Hardware Measurement Result and Discussion For Multi-loop Antenna	73
СНА	PTER 5 CONCLUSION AND FUTURE WORKS	77
REF	ERENCES	79
LIST	OF PUBLICATIONS	82

vi

APPENDICES

83

vii

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

Figure 2.1: Tripole Charge Structure of a Thunder Cloud	10
Figure 2.2: Diagram of Application of Ampere's Law	11
Figure 2.3: Block Diagram of Capacitive Antenna	13
Figure 2.4: Multi-layer Ceramic Capacitor	15
Figure 2.5: Result of Single Layer and Multi-layer Ceramic Capacitor	16
Figure 2.6: Propagation of Electric and Magnetic field	17
Figure 2.7: Direction of B Field at the Point of Lightning Strike	18
Figure 2.8: Block Diagram of Loop Antenna	19
Figure 3.1: Static and Low Frequency solver in CST	26
Figure 3.2: Work flow of the Sensor	27
Figure 3.3: E-static Solver	27
Figure 3.4: Parameter Table	28
Figure 3.5: Summary of Template	28
Figure 3.6: Preview of FR4 Substrate	30
Figure 3.7: Complete Design of Parallel Plate Antenna	30
Figure 3.8: Select "Source and Load" for Simulation	30

Figure 3.9: Pick Top Surface to Inject Simulation Source	31
Figure 3.10: Define Charge Value	31
Figure 3.11: Select bottom FR4 Substrate and Set Charge Value	32
Figure 3.12: Parallel Plate Antenna after Injection of Charges	32
Figure 3.13: Set Electric Field Boundaries	32
Figure 3.14: Overview of Radiation Pattern and Maximum E-field Strength	33
Figure 3.15: Choose the Field Display on Vertical Plane	34
Figure 3.16: Field Display on Vertical Plane	34
Figure 3.17: Uniform E-field Strength between the Plates	35
Figure 3.18: Holder in CST Drawing	36
Figure 3.19: Layout in Ultimaker Cura 3.0	37
Figure 3.20: 3D Printed Holder	37
Figure 3.21: Complete Product of Stacked Capacitive Antenna	37
Figure 3.22: Antenna Measurement	39
Figure 3.23: Example of Picoscope Result	40
Figure 3.24: Select Template	41
Figure 3.25: Hall Sensors/Magnetic Sensors is Chosen	41
Figure 3.26: LF Time Domain Solver is Chosen	42
Figure 3.27: Table of Parameters	42
Figure 3.28: Final Review of Template	43
Figure 3.29: Parameter Table	43
Figure 3.30: Done Loop Model	44
Figure 3.31: Inject Magnetic Source Field	44

Figure 3.32: Insert Field Vector	45
Figure 3.33: Boundary Setting	45
Figure 3.34: Select LF Frequency Domain Solver	46
Figure 3.35: Set Frequency Range	46
Figure 3.36: Simulation Result of Loop Antenna	47
Figure 3.37: Completed Coil Body of Loop Antenna	49
Figure 3.38: Final Product of Loop Antenna	49
Figure 3.39: Top View of Loop Antenna	50
Figure 3.40: Cartesian Plane	51
Figure 3.41: Compass Direction	51
Figure 4.1: Graph of Uniform E-field Strength against Dimension	56
Figure 4.2: Bar chart of Uniform E-field Strength against Air Gap	57
Figure 4.3: Graph of Uniform E-Field against Number of Copper Plate Layer	61
Figure 4.4: Waveform Comparison of Ordinary Parallel Plate Antenna with 2 Copper Stacked Capacitive Antenna	Layer 63
Figure 4.5: Waveform Comparison of Ordinary Parallel Plate Antenna with 4 Copper Stacked Capacitive Antenna	Layer 63
Figure 4.6: Waveform Comparison of Ordinary Parallel Plate Antenna with 6 Copper Stacked Capacitive Antenna	Layer 64
Figure 4.7: Bar Chart of Efficiency against Number of Copper Plate	65
Figure 4.8: Bar Chart of Induced E-field against Radius of Loop Antenna	69
Figure 4.9: Bar Chart of Induced E-field against Number of Turns	72
Figure 4.10: Waveform from Loop 1	73
Figure 4.11: Waveform from Loop 2	74
Figure 4.12: Third Quadrant of the Loop Antenna	75

Х

Figure 4.13: East West Region Shown in Compass Direction	75
Figure 4.14: Radar Picture of Penisular Malaysia	76

xi

LIST OF TABLES

Table 2.1: Limitation of Antenna	22
Table 3.1: Materials Used for Antenna Fabrication	38
Table 3.2: Materials Used of Multi-loop Antenna Fabrication	48
Table 4.1: Table of 10cm x 20cm Parallel Plates with Different Air Gap	54
Table 4.2: Table of 20cm x 30cm Parallel Plates with Different Air Gap	55
Table 4.3: Comparison Table of Stacked Capacitive Antenna	60
Table 4.4: Efficiency of Stacked Capacitive Antenna Compared to Single Pl Antenna	late 65
Table 4.5: Comparison Table of Loop Antenna with Different Size and Number Loop	r of 68
Table 4.6: Comparison Table of Loop Antenna with Different Size and Number Loop	r of 71
Table 4.7 : Polarity of Waveform from Loop 1 and Loop 2	74

LIST OF SYMBOLS AND ABBREVIATIONS

E-Field	:	Electric field
B-field	:	Magnetic field
CST	:	Computer Simulation Technology
Hz	:	Hertz
EMF	:	Electromagnetic Field

xiii

LIST OF APPENDICES

Appendix A : Poster Inotek

1

CHAPTER 1

INTRODUCTION

1.1 Background

Lightning is a normal phenomenon happen around the environment and known by every people on earth. Actually, lightning is an electrostatic discharge inside the thunderstorm. Due to the tripole structure of the thundercloud, lightning is either occurring between cloud and ground, between clouds or in different regions of cloud [1]. Electromagnetic radiation from the electrical breakdown can covered large frequency spectrum from a few Hz up to GHz. The effects of the lightning strike can be very big and able to kill a man in a few second. It is so much important to have own design lightning detector instead of purchasing high cost system from the oversea. We are able to detect the thunderstorm and lightning using own developed system which give convenient to all the Malaysian to avoid fatalities caused by lightning and prevent the server's data losses as well as malfunctioning of control automation machinery in factories.

Lightning detection system involve a few parts which are antennas, buffer circuits, picoscope and display screen. To develop high performance lightning detection system, antennas play very important roles. Sensitivity of antennas should be high enough to ensure the accuracy of collected data. There are single plate capacitive antenna and single loop antennas use in this system. Capacitive antenna is use for electric field measurement while loop antenna for magnetic field detection.

For this project, a better and high accuracy lightning detection system is planned to be designed by increasing the sensitivity of the antennas. This high sensitivity system can be useful as the alarming system for lightning events and a precaution on severe destruction of field-sensitive appliances. Besides, high accuracy of collected data will be helpful for future researches and lightning knowledge development.

1.2 Problem Statement

Current available lightning detection system is using single plate capacitive and single loop antennas to detect the electromagnetic field emission of lightning events. As reported, single plate capacitive and single loop antennas have lower sensitivity in Computer Simulation Technology (CST) software and the radiation pattern of the induced electric field is not satisfied. This dedicate that the performance of antennas may having low sensitivity and can be improved.

Besides, the size of single plate capacitive and single loop antennas in lightning detection system is big in sizes where dimension of capacitive antenna is about A4 size (200cm x 300cm x 2cm) and loop antenna with dimension (75cm x 75cm x 75cm). The big sized antennas may cause some difficulties in technical issues and easily affected by the surrounding factors. Strong wind and rain may influence the orientation angle of the antenna since the system is difficult to shield.

Therefore, it is worth to look into the possibility of making small and portable antennas with high sensitivity.

Aim:

- a) Investigation on the relationship between stacked capacitive antennas and resulted electric field strength compare to single plate antenna
- b) Investigation on the relationship between multi-loop antennas and induced electric field strength compare to single loop antenna.

Objective:

- a) To increase the sensitivity of both capacitive and loop antennas
- b) To prototype portable capacitive and loop antennas
- c) To analyse and evaluate performance of new antennas using both CST software and hardware setup

1.4 Scope

The scope of research consists of 2 parts (A and B part) which are electric field sensor (capacitive antenna) and magnetic field sensor (loop antenna). In order to construct and build a practical and user-friendly system, this project deal with CST