FAULT DETECTION AND DIAGNOSIS FOR WATER-COOLED CHILLER SYSTEM

CHAN KAI YANG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FAULT DETECTION AND DIAGNOSIS FOR WATER-COOLED CHILLER SYSTEM

CHAN KAI YANG

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2018

FAKULTI KEJUTEF اونيۇر،سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	TI TEKNIKAL MALAYSIA MELAKA RAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER RANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II ection and Diagnosis for Water-Cooled
-	
Sesi Pengajian : <u>2017/2018</u>	2
ini disimpan di Perpustakaan dengan1. Laporan adalah hakmilik Universi2. Perpustakaan dibenarkan membua	at salinan untuk tujuan pengajian sahaja. Duat salinan laporan ini sebagai bahan
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)
	, ,
Alamat Tetap: <u>No. 4, Jln</u> <u>Wawasan 3/3,</u> <u>Bandar Baru</u> <u>Ampang, 68000,</u> <u>Selangor.</u> Tarikh : <u>01 June 2018</u>	Tarikh : <u>01 June 2018</u>

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "Fault Detection and Diagnosis for Water-Cooled Chiller System" is the result of my own work except for quotes as cited in the references.

Signature	:	
Author	:	Chan Kai Yang
Date	:	01 June 2018

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:	
Supervisor Name	:	Noor Asyikin binti Sulaiman
Date	:	01 June 2018

DEDICATION

To My Beloved Father and Mother

ABSTRACT

There are many types of air conditioner such as the split unit air conditioner, the package unit air conditioner and the chiller system which is widely used in modern commercial building. The demand of indoor air quality, heating, ventilation and air conditioning (HVAC) systems especially the chiller system of a HVAC system has been continuously increasing from years to years. The HVAC system has become more and more complex to provide a comfortable indoor environment as well as to provide energy management in modern building. However, an operating system with unidentified fault may lead to high energy consumption and system failure. As a result, a fault detection and diagnosis system which is able to identify fault as well as to monitor and diagnose faults within the HVAC system is required. Principal Component Analysis (PCA) is a Fault Detection Method based on data and parameters. It is used to reduce the dimensionality of data and detect faults based on data. On the other hand, a trained model with the implementation of the K-Nearest Neighbor (KNN) algorithm is used to diagnose faults based on input data. Fault detection and diagnosis system is essential in detecting and diagnosing faults to prevent system failure.

ABSTRAK

Terdapat banyak jenis penghawa dingin seperti penghawa dingin unit perpecahan, penghawa dingin unit pakej dan sistem penyejuk yang banyak digunakan di bangunan komersial moden. Permintaan sistem pemansan, pengudaaan dan penghawa dingin (HVAC system) terutamanya sistem pengyejuk telah meningkat secara berterusan. Sistem HVAC telah menjadi lebih kompleks untuk menyediakan persekitaran dalaman yang selesa. Walaubagaimanpun, sistem HVAC terutamanya sistem penyejuk yang beroperasi dengan kerosakan sistem yang tidak dapat dikenal pasti akan mengakibatkan pembaziran tenaga dan kegagalan sistem. Oleh itu, sistem pengesanan dan diagnosis kerosakan sistem penyejuk yang dapat mengenal pasti dan menentukan kerosakan sistem serta memantau kerosakan dalam sistem HVAC terutamanya sistem penyejuk amat diperlukan. Principal Component Analysis (PCA) adalah kaedah yang digunakan untuk mengenal pasti kerosakan di dalam sistem penyejuk berdasarkan data dan paramenter. Ia digunakan untuk mengurangkan dimensi data dan menentukan kerosakan sistem berdasarkan data. Sebaliknya, model berdasarkan algoritma K-Nearest Neighbor (KNN) digunakan untuk menentukan kerosakan dalam sistem penyejuk. Oleh itu, sistem pengesahan dan diagnosis amat diperlukan untuk menggelakkan kegagalan sistem.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere gratitude to Universiti Teknikal Malaysia Melaka (UTeM) for giving me the chance to undertake my Final Year Project in partial fulfilment for Bachelor of Electronic Engineering with Honours.

I would like to thank my supervisor, Madam Noor Asyikin binti Sulaiman who guide me through my Final Year Project. A lot of advises and guidances throughout the projects and advise in working attitudes, discipline in life and knowledge related to engineering field has been given to me and accompany me till the end of this Final Year Project and maybe the rest of my life.

Finally, yet importantly, I would like to express my heartfelt thanks to my parents for their blessings, my friends or classmates for their wishes and helps for the successful completion of my Final Year Project. No man walks alone throughout the journey of life. Without the help from everybody, I could not complete my Final Year Project successfully. Once again, thank you everyone and I am grateful for your help and support.

TABLE OF CONTENTS

Decla	aration	
Аррі	·oval	
Dedi	cation	
Abst	ract	i
Abst	rak	ii
Ackn	owledgements	iii
Tabl	e of Contents	iv
List	of Figures	viii
List	of Tables	x
List	of Symbols and Abbreviations	xi
List	of Appendices	xii
СНА	PTER 1 INTRODUCTION	13
1.1	Introduction	13
1.2	Motivation	13
1.3	Problem Statement	14
1.4	Objectives	15

1.5	Scope of Work	15
1.6	Research Methodology Flow Chart	16
CHA	APTER 2 BACKGROUND STUDY	18
2.1	Introduction	18
2.2	Faults	18
2.3	Types of Faults	19
2.4	Fault Detection and Diagnosis	22
	2.4.1 The scope of Fault Detection and Diagnosis	23
2.5	Approaches to Fault Detection and Diagnosis	24
	2.5.1 Model Based Approach	26
	2.5.2 Diagnostic observers	28
	2.5.3 Parity relations	28
	2.5.4 Parameter Estimation	28
2.6	Data Driven Approach	29
	2.6.1 Fuzzy Logic	29
	2.6.1.1 Fuzzy system as a classifier	30
	2.6.1.2 Fuzzy rules generation by Genetic Algorithms	31
	2.6.1.3 Fuzzy system-based Fault Detection system	32
	2.6.2 Artificial Neural (ANN)	34
	2.6.2.1 Artificial Neural Network Model	36

v

	2.6.3 Principal Component Analysis (PCA)	37	
2.7	Fault Detection and Diagnosis in HVAC system	39	
СНА	PTER 3 METHODOLOGY	43	
3.1	Introduction	43	
3.2	Data Collection	43	
3.3	Classification of the data	46	
3.4	Data Normalization	46	
3.5	Principal Component Number	47	
3.6	Fault Detection	49	
3.7	Fault Diagnosis		
3.8	Development of Graphical User Interface (GUI) for Fault Detection and Diagnosis System		
СНА	PTER 4 results and dicussion	59	
4.1	Introduction	59	
4.2	Fault Detection	60	
	4.2.1 Normal Condition	60	
	4.2.2 Cooling Tower Fan Faulty	63	
	4.2.3 Compressor Malfunction	67	
	4.2.4 Damper Stuck	70	
	4.2.5 Supplied Chilled Water Clogging	73	
	4.2.6 Air Ducting Leakage	77	

4.3	Overview of Fault Detection	82		
4.4	Fault Diagnosis			
	4.4.1 Normal Condition	83		
	4.4.2 Cooling Tower Fan Faulty	84		
	4.4.3 Compressor Malfunction	85		
	4.4.4 Damper Stuck	86		
	4.4.5 Supplied Chilled Water Clogging	87		
	4.4.6 Air Ducting Leakage	88		
4.5	Overview of Fault Diagnosis	89		
СНА	PTER 5 Conclusion	92		
5.1	Introduction	92		
5.2	Conclusion	92		
5.3	Future Work	93		
REFI	ERENCES	94		
APPI	ENDICES	100		

LIST OF FIGURES

Figure 1.1 Types of Air Conditioner	15
Figure 1.2 Research Flow Chart Methodology	16
Figure 2.1 Classification of Fault Detection and Diagnosis	25
Figure 2.2 Stages of model-based Fault Detection and Diagnosis	26
Figure 2.3 Flow Chart Showing Rule Table Generation of the Fuzzy C Algorithm-based Fault Detection System	Genetic 34
Figure 3.1 Prototype of the Chiller System	45
Figure 3.2 MATLAB Commands for Data Normalization	47
Figure 3.3 MATLAB Commands for Principal Component Number	47
Figure 3.4 SCREE Graph for Principal Component Selection	48
Figure 3.5 MATLAB command for T ² analysis	49
Figure 3.6 Overview of train classification model in MATLAB Classification I	Learner 50
Figure 3.7 Import of Train Data with Labelled Response to MATLAB	51
Figure 3.8 Selection of Variables in Classification Learner	52
Figure 3.9 Training Process in Classification Learner App	53
Figure 3.10 Export Output Model to MATLAB Workspace	54
Figure 3.11 Output Model Saved in MATLAB Workspace	54
Figure 3.12 Predicted Result in MATLAB Command Window	55

Figure 3.13 Predicted Results Saved in MATLAB Workspace	55
Figure 3.14 GUI Appearance and Design of the System	57
Figure 3.15 Commands for Fault Detection Panel and Data Name Display	58
Figure 3.16 Commands for Fault Diagnosis Panel	58
Figure 4.1 SCREE Plot for Normal Condition	60
Figure 4.2 Fault Detection for Normal Condition	62
Figure 4.3 Fault Detection for Normal Condition at 4.22pm	63
Figure 4.4 SCREE Plot for Cooling Tower Fan Faulty	64
Figure 4.5 Fault Detection for Cooling Tower Fan Faulty	66
Figure 4.6 Fault Detection for Cooling Tower Fan Faulty at 11.05am	66
Figure 4.7 SCREE Plot for Compressor Malfunction	67
Figure 4.8 Fault Detection for Compressor Malfunction	69
Figure 4.9 Fault Detection for Compressor Malfunction at 10.22am	69
Figure 4.10 SCREE Plot for Damper Stuck	70
Figure 4.11 Fault Detection for Damper Stuck	72
Figure 4.12 Fault Detection for Damper Stuck at 10.10am	73
Figure 4.13 SCREE plot for Supplied Chilled Water Clogging	74
Figure 4.14 Fault Detection for Supplied Chilled Water Clogging	76
Figure 4.15 Fault Detection for Supplied Chilled Water Clogging at 10.06am	77
Figure 4.16 SCREE Plot for Air Ducting Leakage	78
Figure 4.17 Fault Detection for Air Ducting Leakage	81
Figure 4.18 Fault Detection for Air Ducting Leakage at 11.30am	81
Figure 4.19 Confusion Matrix of Output Model	83

LIST OF TABLES

Table 2.1 Main characteristics (X) of primary faults for different components	20
Table 3.1 Type of Parameters Detected by Sensors	44
Table 3.2 List of Faults	46
Table 4.1 Summary of Fault Detection for Normal Operation	61
Table 4.2 Summary of Fault Detection for Cooling Tower Fan Faulty	65
Table 4.3 Summary of Fault Detection for Compressor Malfunction	68
Table 4.4 Summary of Fault Detection for Damper Stuck	71
Table 4.5 Summary of Fault Detection for Supplied Chilled Water Clogging	75
Table 4.6 Summary of Fault Detection for Air Ducting Leakage	79
Table 4.7 Summary of Fault Diagnosis for Normal Operation	84
Table 4.8 Summary of Fault Diagnosis for Cooling Tower Fan Faulty	85
Table 4.9 Summary of Fault Diagnosis for Compressor Malfunction	86
Table 4.10 Summary of Fault Diagnosis for Damper Stuck	87
Table 4.11 Summary of Fault Diagnosis for Supplied Chilled Water Clogging	88
Table 4.12 Summary of Fault Diagnosis for Air Ducting Leakage	89
Table 4.13 Summary of Fault Diagnosis for Each Types of Faults	91

LIST OF SYMBOLS AND ABBREVIATIONS

For examples:

HVAC	:	Heating, Ventilation, Air Conditioning
PCA	:	Principal Component Analysis
KNN	:	K-Nearest Neighbor
GUI	:	Graphical User Interface
EMC	:	Electromagnetic Compatibility
ANN	:	Artificial Neural Network
SPM	:	Statistical Process Monitoring

xi

LIST OF APPENDICES

Appendix A: MATLAB Commands for Fault Detection	100
Appendix B: MATLAB Commands for Development of Graphical User	101
Interface	101

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, the motivation, problem statement, objective and scope of work will be discussed. Discussion of all subtopics in this chapter will be the initiative for this project.

1.2 Motivation

As shown in Figure 1.1, there are many types of air conditioner in the market, such as the split unit air conditioner which consists of one outdoor unit and one indoor unit air conditioner that is commonly used in most of the residents, the package unit air conditioner which consists of one outdoor unit and multiple indoor units air conditioner that is commonly used in small commercial building, and the chiller system which is widely used in modern commercial building. The demand of indoor air quality, heating, ventilation and air conditioning (HVAC) systems especially the chiller system of a HVAC system has been continuously increasing from years to years [1]. The chiller system of the HVAC system has become more and more complex to provide a comfortable indoor environment as well as to provide energy management in modern building [2]. The chiller system of the HVAC system is commonly equipped with power and control system, and several component and elements of the chiller of the HVAC system itself which makes the system complex. When all these things, together with the chiller of the HVAC system are installed in the building, problems such as equipment fault, inaccurate detection of sensors, wrong installation, lack of maintenance can cause negative effects on the chiller system of the HVAC system and eventually affect the indoor environment air quality. As a result, a system which is able to identify fault as well as to monitor the HVAC system and diagnose fault within the chiller of the HVAC system is required.

1.3 Problem Statement

The chiller system of a HVAC system is a large system and it involves lots of elements as well as components. As a result, it is difficult to identify the fault when something goes wrong within the system. It has come to a solution where sensors are installed within the chiller system of the HVAC system to detect the parameters of the system such as the temperature sensors are installed in the test room to detect the temperature in the rooms. As the system is complex, it is difficult to identify the fault based on the complex and multiple variables data obtained from the sensor. An operating system with fault may leads to high energy consumption as well as system failure. Therefore, it is very important to locate the fault within the system as fast as possible to avoid energy wastage and system failure.

1.4 Objectives

- To identify fault on chiller system by using Principal Component Analysis (PCA) and K-Nearest Neighbor (KNN).
- 2. To develop a Fault Detection and Diagnosis System.

1.5 Scope of Work

As mentioned in Subtopic 1.1, there are many types of air conditioner in the market such as the split unit, package unit and the chiller system. As a result, this project is limited to the water-cooled chiller system which has two test rooms. The data and parameters obtained from the system are simulated with PCA Algorithms in MATLAB.

Figure 1.1 Types of Air Conditioner

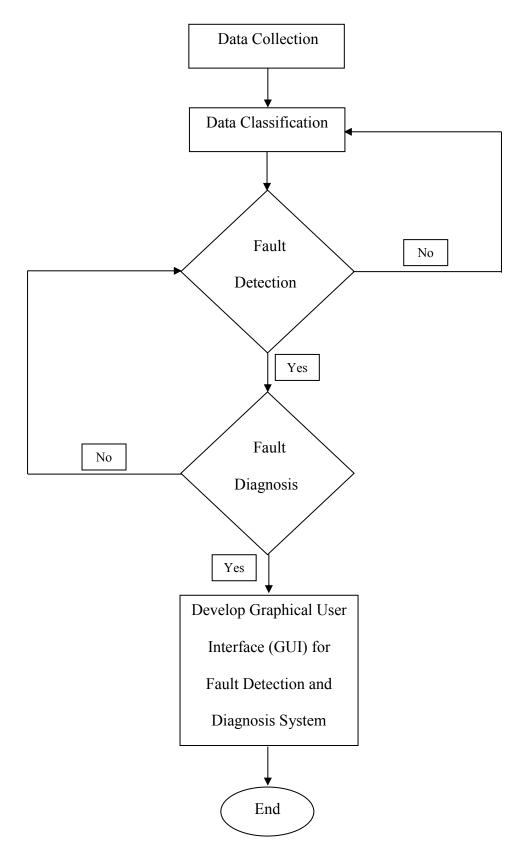


Figure 1.2 Research Flow Chart Methodology

By referring to referring to Figure 1.2, it shows the flow chart of this project. At the initial stage, sensors are fixed in the chiller system of the HVAC system to collect data from the chiller system. Once data is being collected, they are being classified to different categories for the preparation of development of the fault detection and diagnosis system. The fault detection system should be able to detect abnormal condition based on the data obtained from the sensor in the chiller system. If the fault detection system is not able to do so, it has to be returned to the previous step to examine problems that causes errors on the fault detection system and redevelop the fault detection system until it is able to detect abnormal condition based on the data. The next step is to develop a fault diagnosis system to diagnose the exact faults occurred in the system based on the data obtained. If the fault diagnosis system is unable to perform fault diagnosis, it has to be returned to the previous step to examine problems which causes errors on the fault diagnosis system. Once the fault diagnosis is being developed, the graphical user interface (GUI) for the fault detection and diagnosis system can be developed for the ease of the users.

CHAPTER 2

BACKGROUND STUDY

2.1 Introduction

In this chapter, the background of the project will be explained briefly for better understanding of the research. A review of previous related works will be discussed to obtain some useful information by synthesizing their work to make this research successful.

2.2 Faults

A fault is an unpermitted deviation of at least one characteristics property (feature) of the system from the acceptable, usual, standard condition [3]. A fault is a condition of a state within the system. The difference between the identified fault value and the value that go against of a tolerance zone for its normal value is considered as