ANALYSIS ON DIFFERENT LENGTH OF SENSOR AREA TOWARDS THE PERFORMANCE OF FIBER OPTIC SENSOR FOR REFRACTIVE INDEX MEASUREMENT

AMIRUL FIKRI BIN AZME

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

ANALYSIS ON DIFFERENT LENGTH OF SENSOR AREA TOWARDS THE PEFORMANCE OF FIBER OPTIC SENSOR FOR REFRACTIVE INDEX MEASUREMENT

AMIRUL FIKRI BIN AZME

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > **JUNE 2018**

WALAYSIA 44	
TTERMIT	UTeM
ا ملیسیا ملاك	اونيوم سيتر تيڪنيد
	IKAL MALAYSIA MELAKA

:

:

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

ANALYSIS ON DIFFERENT LENGTH OF SENSOR AREA TOWARDS THE PERFORMANCE OF FIBER OPTIC SENSOR FOR REFRACTIVE INDEX MEASUREMENT 2017/2018

Sesi Pengajian

Saya <u>AMIRUL FIKRI BIN AZME</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

SULIT*

TERHAD*

TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

Disahkan oleh:

(TANDATANGAN PENULIS)		(COP DAN TANDATANGAN PENYELIA)
Alamat Tetap:	NO 11. JALAN MANIS 7. TAMAN MANIS 2. 86400. PARIT RAJA, BATU PAHAT . JOHOR	
Tarikh :	28 MAY 2018	Tarikh : 28 MAY 2018

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

C) Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this report entitled "ANALYSIS ON DIFFERENT LENGTH OF SENSOR AREA TOWARDS THE PERFORMANCE OF FIBER OPTIC SENSOR FOR REFRACTIVE INDEX MEASUREMENT" is the result of my own work except for quotes as cited in the references.

> Signature : Author : AMIRUL FIKRI BIN AZME Date : 28 MAY 2018

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature :

Supervisor Name : DR HANIM BINTI ABDUL RAZAK

Date : 28 MAY 2018

C Universiti Teknikal Malaysia Melaka

DEDICATION

This humble effort especially to my beloved parents, family, lecturers and friends, whose love can never be forgotten, whose support, guidance and encouragement upon completing this research and thesis.

ABSTRACT

The massive increase in electronic communication during the last decades has spurred the development of ways to transport and process large quantities of data. There are various types of methods used based on electrical detector for liquid concentration measurement. Optical fiber sensor has received a great attention in recent years due to their specialty on sensitivity, size and technology which capable to measure various space area and conditions. In this project, Single mode-Multimode-Single mode (SMS) and Multimode-Single mode-Multimode (MSM) were tested in five different lengths of sensing region which are 4 cm, 6 cm, 8 cm, 10 cm and 12 cm at 1310 nm and 1550 nm. The etched sensor region tested in water (1.333 RIU), 1 mol of sucrose (1.386 RIU) and oil (1.464 RIU) with different values of refractive index. The change of the refractive index affects the resonant wavelength. For SMS, it observed that the longest sensor demonstrate the best sensitivity is -11.154 nm/RIU which is for 12 cm length sensor region and the best wavelength for optical light source is 1310 nm.

ABSTRAK

Peningkatan besar dalam komunikasi elektronik dalam dekad yang lalu telah mendorong perkembangan cara untuk mengangkut dan memproses data yang banyak. Terdapat pelbagai jenis kaedah yang digunakan berdasarkan pengesan elektrik untuk mengukur kepekatan cecair. Sensor serat optik telah mendapat perhatian yang sangat baik dalam tahun-tahun kebelakangan ini kerana kepakaran mereka terhadap kepekaan, saiz dan teknologi yang mampu mengukur pelbagai ruang dan keadaan ruang. Dalam projek ini, mod Single-Multimode-Single (SMS) dan Multimode-Single mode-Multimode (MSM) telah diuji dalam lima panjang sensing region iaitu 4 cm, 6 cm, 8 cm, 10 cm dan 12 cm pada 1310 nm dan 1550 nm. Kawasan sensor yang terukir diuji dalam air (1.333 RIU), 1 mol sucrose (1.386 RIU) dan minyak (1.464 RIU) yang mempunyai nilai indeks biasan yang berbeza. Perubahan indeks biasan memberi kesan kepada panjang gelombang resonan. Untuk SMS, diperhatikan bahawa sensor terpanjang menunjukkan kepekaan terbaik 11.751 nm / RIU pada panjang 12 cm untuk 1310 nm. Sementara itu, bagi gentian MSM, kepekaan yang terbaik adalah -11.154 nm/RIU yang merupakan kawasan sensor panjang 12 cm dan panjang gelombang terbaik untuk sumber cahaya optik ialah 1310 nm

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to the Almighty for His blessing and grace in giving me strength to complete my Final Year Project, entitled "Analysis on different length of sensor area towards the performance of fiber optic sensor for refractive index measurement". With the strength given, I could finish this research and able to overcome all the obstacles that occur during the research periods.

I would like to take this opportunity to express my profound gratitude and deep regards to my supervisor for the Final Year project I & II, Dr. Hanim Binti Abdul Razak for her exemplary guidance, monitoring and constant encouragement throughout the course of this thesis. The blessing, help and guidance given by her time to time shall carry me a long way in the journey of life on which I am about to embark.

I also would like to take this opportunity to express a deep sense of gratitude to Dr. Hazura Binti Haroon, as co-supervisor for her cordial support, valuable information and guidance, which helped me in completing this task through various stages. Not forgotten to my friends and colleagues who are always teach me and gave me spirits and inspiration in finishing my research as well as overcome the hardship together strongly.

My special gratitude dedicated to my beloved parents who always help and support me throughout this research. I really appreciate all their effort and encouragement that's given to me along the period of doing this project. It was their kindness that gave me opportunity to complete this research.

TABLE OF CONTENTS

Dec	laration	
Арр	proval	
Ded	lication	
Abs	stract	i
Abs	trak	ii
Ack	knowledgements	iii
Tab	ole of Contents	v
List	of Figures	viii
List	t of Tables	xi
List	t of Equations	xii
List	of Symbols and Abbreviations	xiii
List	of Appendices	XV
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	3

1.3	Objective	3
1.4	Scope of work	3
1.5	Organization of Thesis	
СНА	APTER 2 BACKGROUND STUDY	5
2.1	Introduction	7
2.2	Fiber Optic	7
	2.2.1 Plastic Optical Fiber	11
	2.2.2 Silica optical fiber	13
	2.2.2.1 Single mode fiber	14
	2.2.2.2 Multimode Fiber	16
2.3	Fiber Optic Sensor	19
	2.3.1 Temperature Sensor	20
	2.3.2 Liquid Sensor	21
2.4	Enhancement Method	23
	2.4.1 Bending	23
	2.4.1.1 Macrobending	24
	2.4.1.2 Microbending	25
	2.4.2 Different Length	26
	2.4.3 Etching Process	28
СНА	APTER 3 METHODOLOGY	30

3.1	Flow Chart	31
3.2	The Proposed System	32
3.3	Project Implementation	32
	3.3.1 Stage 1	35
	3.3.2 Stage 2	42
	3.3.2.1 Etching Process	45
СНА	PTER 4 RESULTS AND DISCUSSION	48
4.1	Single mode-multimode-single mode (SMS) 1310 nm	48
4.2	Single mode-multimode-single mode (SMS) 1550 nm	51
4.3	Multimode-Single mode-Multimode (MSM) 1310 nm	54
4.4	Multimode-Single mode-Multimode (MSM) 1550 nm	57
СНА	PTER 5 CONCLUSION AND FUTURE WORKS	61
5.1	Conclusion	61
5.2	Future work	63
REF	ERENCES	64
APP	ENDICES	68

vii

LIST OF FIGURES

Figure 2.1: Flow of the research	6
Figure 2.2: Optical Fiber	7
Figure 2.3: Basic structure of an optical fiber	9
Figure 2.4: Total Internal Reflection in fiber core	9
Figure 2.5: Light transmission inside the core	14
Figure 2.6: Single mode core and diameter	15
Figure 2.7: Light transmit in fiber	16
Figure 2.8: Multimode Fiber Sizing	16
Figure 2.9: Graded Index Fiber	17
Figure 2.10: Step Index Fiber	18
Figure 2.11: Wavelength Shift	20
Figure 2.12: Macrobending	24
Figure 2.13: Micro bending	25
Figure 3.1: Project Flow Chart	31
Figure 3.2: Block Diagram	33
Figure 3.3: Methodology for fiber optic sensor	34

C Universiti Teknikal Malaysia Melaka

Figure 3.4 : Optical experimental setup	35
Figure 3.5: Single mode fiber optic	35
Figure 3.6: Multimode fiber optic	36
Figure 3.7: Fiber Cutter	36
Figure 3.8: Fusion Splicing	37
Figure 3.9: Aligned Fiber Position	38
Figure 3.10: Both fiber ready for splice	38
Figure 3.11: Fiber Connecter	39
Figure 3.12: Experimental Setup	39
Figure 3.13: Optical light source	40
Figure 3.14: RUIYAN RY3200A Optical Power Meter	41
Figure 3.15: Single mode-Multimode-Single mode structure	41
Figure 3.16: Multimode-Single mode-Multimode structure	42
Figure 3.17: DR-101 Digital Refractometer	43
Figure 3.18: Water (1.333)	43
Figure 3.19: Oil (1.386)	44
Figure 3.20: 1.0 mol sucrose (1.464)	44
Figure 3.21: Hydrofluoric Acid 55%	45
Figure 3.22: ZEISS Axioskop 2 MAT (Image Analyzer)	46
Figure 3.23: Fiber structure after & before etching	47
Figure 4.1: Wavelength over Refractive Index graph	49
Figure 4.2: Linear fitting regression of sensor device sensitivity	50
Figure 4.3: Wavelength over Refractive Index graph	52

Figure 4.4: Linear fitting regression of sensor device sensitivity	53
Figure 4.5: Wavelength over Refractive Index graph	55
Figure 4.6: Linear fitting regression of sensor device sensitivity	56
Figure 4.7: Wavelength over Refractive Index graph	58
Figure 4.8: Linear fitting regression of sensor device sensitivity	59

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

Table 1: Scope of work	4
Table 2: Overall Fiber Structure	18
Table 3: Previous work on liquid sensor	22
Table 4: Refractive index value	23
Table 5: Previous work on length	26
Table 6: Previous work on etching process	29
Table 7: Etching time	46
Table 8: SMS 1310 nm experimental observation details	51
Table 9: SMS 1550 nm experimental observation details	54
Table 10: MSM 1310 nm experimental observation details	57
Table 11: MSM 1550 nm experimental observation details	60

LIST OF EQUATIONS

Equation 2.1: Law of Refractions

11

LIST OF SYMBOLS AND ABBREVIATIONS

SMF	:	Single mode fiber
MMF	:	Multimode fiber
SMS	:	Single mode-multimode-single mode
MSM	:	Multimode-Single mode-Multimode
HF	:	Hydrofluoric Acid
SiO ₂	:	Silica
FOS	:	Fiber optic sensor
OSA	:	Optical Spectrum Analyzer
RI	:	Refractive Index
nm	:	Nanometer
FBG	:	Fiber Bragg Grating
POF	:	Plastic optical fiber
EMI	:	Electromagnetic interference
GaAs	:	Gallium arsenide
NaCl	:	Sodium Chloride
NH4F	:	Ammonium Fluoride
(NH4)2SO4	:	Ammonium Sulfate
H_2SO_4	:	Sulfuric acid

- LED : Light emitting diode
- H₂O : Water
- nm/RIU : Nanometer/refractive index per unit
- H2SO4 : Sulfuric acid
- H2SO4 : Sulfuric acid

LIST OF APPENDICES

Appendix A: Optical Light Source Datasheet

Appendix B: DR-101 Digital Refractometer Features

Appendix C: OSA M9740A Datasheet

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

This chapter consist of introduction, problem statement, objective and scope of the study.

1.1 Introduction

The massive increase in electronic communication during the last decades has spurred the development of ways to transport and process large quantities of data. One important contribution to this development has been the invention and development of optical fibers. Optical fiber sensor has received a great attention in recent years due to their specialty on sensitivity, size and immunity to electromagnetic interference in the biological, chemical and environment industries [1]. Fiber optic sensor is a technology which capable to measure various space area and conditions. This is a step forward for fiber optic sensor because other sensing device cannot reach and unsuitable. The advantage of the fiber optic sensor includes that it carries more information than conventional copper wire [2].

The main fiber optic sensor used are single mode and multimode fiber optic sensor that mainly made from silica (SiO₂). Single mode diameter normally between range of 8.3 to 10 microns that has one mode of transmission and has a relatively narrow diameter. While for multimode fiber, it has a little bit bigger diameter with a common diameters in the 50-100 micron range for the light carry all the data and component through it. This project is focusing on the performance of the single mode and multimode fiber sensor on different length because both fiber will be spliced together. Single mode-Multimode-Single mode (SMS) and Multimode-Single mode-Multimode (MSM) are used to detect the refractive index for different concentration of liquid. The proposed of the system can be implied widely in chemical and others industries that face with dangerous solutions.

By doing so, it can be assure the exact safeness when operating at highly dangerous industries. It is very crucial to ensure the safety of the workers and the structure of the buildings. Although it is focused on industrial and dangerous area, it also can be used as home appliance which allow consumer to monitor their premise form others dangerous solution that can harm their families members. The usage of a refractive sensor is unlimited due to it can be used for almost anywhere but the equipment used for the sensor determined the scope of the product.

1.2 Problem Statement

There are various types of sensors used for liquid concentration measurement especially based on electrical devices. Electrical devices may cause flammable due to the electricity that flow through the wire. However, fiber optic are made of silica and have various advantages such as immune to electromagnetic interference and use light pulse to transmit information and it safe to use for all solutions. In addition, the sensitivity of the sensor will be effected when different length is applied on the fiber. Then it will give various output power and increase the evanescent wave output. Measurement of liquid concentration in really important especially in the chemical industries, so fiber optic is the best way to have save measurement and avoid any major damage.

1.3 Objective

The objective of this project are:

- i. To design the single mode and multimode for SMS and MSM fiber optic sensor
- ii. To analyze the effect of different lengths on single mode and multimode fiber optic sensor
- iii. To evaluate the sensitivity of the refractive index on liquid concentration based on different length fiber.

1.4 Scope of work

The scope of work on this project is to analyze the effect of different length on single mode and multimode fiber optic sensors (FOS). Both sensor will be test on the refractive index of the liquid concentration to check the sensitivity of the sensors. The fiber optic sensor were developed by using a fusion arc splicing technique.