PERFORMANCE ANALYSIS OF VARIOUS WATER LEVEL DETECTOR SENSOR FOR FLOOD WARNING SYSTEM

YOVARAJ A/L SURIA RAJAH

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PERFORMANCE ANALYSIS OF VARIOUS WATER LEVEL DETECTOR SENSOR FOR FLOOD WARNING SYSTEM

YOVARAJ A/L SURIA RAJAH

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

PERFORMANCE ANALYSIS OF VARIOUS WATER LEVEL DETECTOR SENSOR FOR FLOOD WARNING SYSTEM. 2017/2018

Sesi Pengajian

:

Saya <u>YOVARAJ A/L SURIA RAJAH</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia **SULIT*** seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang **TERHAD*** telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan. **TIDAK TERHAD** Disahkan oleh: (TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA) Alamat Tetap: 1A, JALAN SEROJA 1/5B, TAMAN MELUR INDAH, 08000 SUNGAI PETANI, KEDAH Tarikh : Tarikh :.... 23 MAY 2018

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "PERFORMANCE ANALYSIS OF VARIOUS WATER LEVEL DETECTOR SENSOR FOR FLOOD WARNING SYSTEM" is the result of my own work except for quotes as cited in the references.

Signature	:	
Author	:	YOVARAJ A/L SURIA RAJAH
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:	
Supervisor Name	:	
Date	:	

DEDICATION

To my beloved mother and father, my dearest brothers and sisters, my beloved supervisor and all my lecturers and finally all my good friends for their encouragement and supports through my journey of doing project and education.

ABSTRACT

Flood is the most damaging natural disaster. It is crucial to develop a flood warning system to reduce the flood risk. Getting a quick feedback regarding the rise of the water level would help the surrounding area to take early precaution such as moving away quickly to a safer area or higher place. Thus, this project is about designing a system that can measure the level of water rising at the potential flooded area. Ultrasonic level model is used as the methodology in this project. The Ultrasonic sensor, Arduino Uno, ESP8266 WIFI module are used as hardware in the system. Arduino Uno is used to collect the data from the Ultrasonic sensor and transmit the data to ESP8266 WIFI module to show the water rising graph in ThingSpeak which is known as one of the IoT cloud. According to the water level, the tower light will signal it which is green for low water level, orange for moderate and red for dangerously high. QR codes specific to the areas are available for scanning which shows the water level of that area through the Flood Monitoring mobile application.

ABSTRAK

Banjir adalah salah satu bencana alam yang berbahaya dan membawa banyak kerosakan. Oleh itu, sistem amaran awal banjir penting untuk mengurangkan risiko banjir. Sistem ini akan memudahkan untuk mendapat amaran yang cepat mengenai kenaikan paras air yang boleh membantu kawasan sekitar untuk mengambil langkah berjaga-jaga awal seperti bergerak cepat ke kawasan yang lebih selamat atau tempat yang lebih tinggi. Oleh itu, projek ini adalah mengenai membina sistem yang dapat mengukur tahap peningkatan air banjir di kawasan yang berpotensi untuk banjir. Model tahap ultrasonik digunakan sebagai metodologi dalam projek ini. Sensor ultrasonik, Arduino Uno, ESP8266 WIFI modul digunakan sebagai perkakasan dalam sistem. Arduino Uno digunakan untuk mengumpul data dari sensor ultrasonik dan menghantar data ke modul ESP8266 WIFI untuk menunjukkan graf kenaikan air di Thingspeak yang dikenali sebagai salah satu 'IoT Cloud'. Mengikut paras air, lampu "towerlight" akan memberi isyarat iaitu hijau untuk tahap air rendah, oren untuk sederhana dan merah untuk berbahaya tinggi. Kod QR khusus untuk kawasankawasan tertentu disediakan untuk pengimbasan yang menunjukkan tahap air kawasan itu melalui aplikasi "Flood Monitoring".

ACKNOWLEDGEMENTS

I would like to take this golden opportunity to express my gratitude to my final year project supervisor, Dr. Hazli Rafis Bin Abdul Rahim, a kind soul, for always being there, guiding me throughout the completion of this project. He has ensured this project runs smoothly.

I would also thank my co supervisor Dr Zaiton Binti Abdul Mutalip for being patient and enthusiastic about this project. This project cannot be completed and be perfect as it is now without the valuable suggestions and useful information from both. They have given me the greatest courage in completing this project.

Most importantly, I would like to express my deepest love and appreciation to my beloved parents for always being supportive of whatever I do, especially for this project. They have always been my greatest strength during hardships. Thanks to them for giving me unlimited encouragement during my studies in University Technical Malaysia Malacca (UTeM).

Last but not least, many thanks to my friends who have always supported and helped me during the development and finishing of this project. They have shared their knowledge and spent time helping when I need them the most.

TABLE OF CONTENTS

Decla	aration	
Арри	roval	
Dedi	cation	
Abst	ract	i
Abst	rak	ii
Ackr	nowledgements	i
Tabl	e of Contents	ii
List	of Figures	viii
List	of Tables	X
List	of Symbols and Abbreviations	xi
List	of Appendices	xii
СНА	PTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement (PS)	6
1.3	Project Objectives (PO)	6
1.4	Project Scope	7

1.5	Project Contribution	7	
1.6	Project Organization		
	1.6.1 Chapter 1: Introduction	8	
	1.6.2 Chapter 2: Background Study	8	
	1.6.3 Chapter 3: Project Methodology	8	
	1.6.4 Chapter 4: Result Discussion	8	
	1.6.5 Chapter 5: Conclusion	8	
1.7	Conclusion	9	
CHA	APTER 2 BACKGROUND STUDY	10	
2.1	Introduction	10	
2.2	Wireless System	11	
	2.2.1 Wireless Fidelity	11	
	2.2.2 Bluetooth	11	
	2.2.3 Global System of Mobile Communication (GSM)	11	
2.3	Water Sensors	12	
	2.3.1 Ultrasonic Sensor	12	
	2.3.2 Water Level Sensor	13	
	2.3.3 Float Sensor	14	
2.4	Research on Previous Studies or Cases	15	
	2.4.1 Flood Detection System Using Wireless Sensor Network	15	

	2.4.2	Miniaturized Water Flow and Level Monitoring System for Flood	
		Disaster Early Warning	15
	2.4.3	Conceptual Design of Pre-Flood Warning System Based on User Mobility	17
	2.4.4	Flood Monitoring and Early Warning System using Ultrasonic Sens	or
			19
	2.4.5	A Novel Dual Traffic and Flash Flood Monitoring System Using Ultrasonic Sensors	19
	2.4.6	Development of a Low-Cost Community Based Real Time Flood	
		Monitoring and Early Warning System	20
	2.4.7	Ultrasonic Monitoring System	23
	2.4.8	Implementation of Flash Flood Monitoring System Based on Wirele	ess
		Sensor Network in Bangladesh	23
	2.4.9	Emergency population warning about Floods by Social Media	24
2.5	Conc	lusion	25
СНА	PTER	3 METHODOLOGY	26
3.1	Introc	luction	26
3.2	Infor	nation About Early Warning System for Flood	26
3.3	Meth	odology Flowchart	28
3.4	Synoj	psis for Methodology	31
3.5	Plann	ing	31
	3.5.1	Design	31
	3.5.2	Testing	32

	3.5.3 Troubleshoot	32
3.6	Flowcharts of Project	33
	3.6.1 Analysis Phase Flowchart	33
	3.6.2 Output Flowcharts	34
3.7	Block Diagram	37
	3.7.1 Synopsis of Block Diagram	37
3.8	Microcontroller	38
	3.8.1 Arduino Uno	38
3.9	Sensors	39
	3.9.1 Ultrasonic Sensor	39
3.10	Printed Circuit Board (PCB) Fabrication	39
3.11	Web Base System and Mobile Application	41
	3.11.1 ThingSpeak (IoT)	41
	3.11.2 App Inverter 2 Technology	42
3.12	Articles, Journals and Reports	42
СНА	PTER 4 RESULTS AND DISCUSSION	44
4.1	Introduction	44
4.2	Project Analysis	45
	4.2.1 Sensitivity of Sensor	45
	4.2.2 Measurement Range of Sensor	46

v

	4.2.3	Cost of Sensors	48		
4.3	Result				
	4.3.1	4.3.1 Result of Analysis			
		4.3.1.1 Sensitivity Comparison Between Ultrasonic and Water Leve	el 49		
		4.3.1.2 Measurement Range Comparison Between Ultrasonic and Water Level	50		
		4.3.1.3 Result of Characterization Comparison	51		
	4.3.2	Result of Project	51		
		4.3.2.1 Tower Light	51		
		4.3.2.2 ThingSpeak (Graph)	52		
		4.3.2.3 Mobile Application (Flood Monitor)	53		
	4.3.3	Project Overview	55		
		4.3.3.1 Prototype of Project	55		
		4.3.3.2 Circuit Design	56		
CHA	PTER	5 CONCLUSION AND FUTURE WORKS	58		
5.1	Introd	luction	58		
5.2	Concl	usion of Project	58		
5.3	Future	e Work	60		
	5.3.1	Real Time Flood Monitoring System using Radar	60		
	5.3.2	Automatic Water Level Monitoring and Controlling System (IoT)	61		

REFERENCES	63
APPENDICES	67

LIST OF FIGURES

Figure 1.1: The area normally affected by flood	3
Figure 1.2: Flood 2017 in Rantau Panjang, Terengganu	3
Figure 1.3: Flood 2017 in Kota Bharu, Kelantan	4
Figure 1.4: Evacuation During Flood at Penang, 2017	4
Figure 2.1: Way of Ultrasonic Sensor Working in Water	12
Figure 2.2: Way of Water Level Sensor Working in Water	13
Figure 2.3: Functionality Float Sensor in Water	14
Figure 2.4: Flowchart of the project	16
Figure 2.5: Flowchart of the project	18
Figure 2.6: Flowchart of the project	22
Figure 3.1: EWS Observer Controller Model and the Subsystem	27
Figure 3.2: Flowchart for Methodology material	29
Figure 3.3: Project Process Flowchart	30
Figure 3.4: Flowchart in Analysis Phase	33
Figure 3.5: Flowchart of Tower Light Operative	34
Figure 3.6: Flowchart of ThingSpeak Operative	35
Figure 3.7: Flowchart of Mobile Apps Operative	36
Figure 3.8: The Block Diagram Project	37

Figure 3.9: Diagram of Arduino Module	38
Figure 3.10: Ultrasonic Sensor	39
Figure 3.11: Etching Process	40
Figure 3.12: ThingSpeak Web-Based	41
Figure 3.13: MIT Apps Inverter	42
Figure 4.1: Sensitivity of Ultrasonic Sensor	45
Figure 4.2: Sensitivity of Water Level Sensor	46
Figure 4.3: Measurement Range of Ultrasonic Sensor	47
Figure 4.4: Measurement Range of Water Level Sensor	47
Figure 4.5: Cost of Three Sensors	48
Figure 4.6: Sensitivity Comparison Between Ultrasonic and Water Level	49
Figure 4.7: Measurement Range Comparison Between Ultrasonic and W	Vater Level 50
Figure 4.8: Tower Light	52
Figure 4.9: Graph to Monitoring from Thingspeak	53
Figure 4.10: Mobile Application (Flood monitor)	54
Figure 4.11: Project Prototype	55
Figure 4.12: Ultrasonic Sensor Placed on Top	56
Figure 4.13: Circuit after Fabrication	56
Figure 4.14: Circuit after Insert Component	57
Figure 5.1: Monitoring System Using Satellite	61
Figure 5.2: Circuit Diagram of The Project	62

ix

LIST OF TABLES

Table 4.1: Comparison of Three Sensors

LIST OF SYMBOLS AND ABBREVIATIONS

For examples:

WIFI	:	Wireless Fidelity
JPS	:	Jabatan Pengaliran Sungai
JKR	:	Jabatan Kerja Raya
IoT	:	Internet of Thing
PVC	:	Polyvinyl Chloride
VSM	:	Virtual System Modelling
ESP8266	:	Wifi Module
IOX	:	Ionospheric Osculation Experiment
DC	:	Direct Current
AC	:	Alternating Current
WSN	:	Wireless Sensor Network
		Supervisory Control and Data Acquisition

LIST OF APPENDICES

Appendix A: Project Circuit Layout	67
Appendix B: Project Coding	68

CHAPTER 1

INTRODUCTION

This chapter discusses about the introduction of the project and the project background. It outlines the problem statements, project questions, project objectives, project scopes, project contributions and the thesis organization of this project.

1.1 Introduction

Malaysia has an equatorial climate with constant high temperatures and a high relative humidity. The climate is influenced by the northeast and southwest monsoons. The former, prevailing between November and February, brings heavy rainfall as much as 600 mm in 24 hours in extreme cases [1] predominantly to the east coast of Peninsular Malaysia and to Sabah and Sarawak. Rain bearing winds also come with the southwest monsoon from April to September though rainfalls during these periods are generally less than during the northeast monsoon. There are, in addition, two transitional periods between the monsoons (inter monsoon) when convectional thunderstorms are common. The annual average rainfall is 2420 mm for Peninsular Malaysia, 2630 mm for Sabah and 3830 mm for Sarawak, with

heavier precipitation recorded in the east coast of Peninsular Malaysia and the coastal regions of Sabah and Sarawak.

There are two basic types of rainfall causing flooding viz, moderate intensity, long duration rainfall covering a wide area; and high intensity, short duration localized rainfall [2]. In addition, flood records indicate that there is a seasonal pattern of flood occurrences. The east coast and the southern part of Peninsular Malaysia, Sabah and Sarawak are mainly affected by floods during December to January when the northeast monsoon is prevailing. Flooding occurs due to widespread prolonged heavy rainfall resulting in a large concentration of runoff which is very much more than the capacities of streams and rivers. Extensive areas are often inundated. The west coast of Peninsular Malaysia on the other hand is mainly affected from September to November during the winter and monsoon period when convectional thunderstorms become prevalent. Such storms bring short but very intense rainfall which severely overloads the drainage systems, causing localized "flash" floods.

Following a news article from NST online on the 5th of November 2017 regarding the latest flood disaster in Penang, Kedah and Perak which has caused a national chaos, and it has been identified the flood was due to continuous heavy rain [3]. It was reported that in Penang, the increasing number of casualties due to flood were predominantly septuagenarian who were failed to get evacuated on time. The flood which has reached up to waist line has affected major roads in Penang causing heavy traffic and as well as Penang Government Hospital. Where else in Kedah, it was reported that schools were underwater, but the Education Department has yet to issue any order for the schools to close. However, the evacuation process was done efficiently as stated by the Civil Defence Force (APM) which reports that 336 people were evacuated in Kuala Muda district while 22 people were evacuated in Yan. This is understood that lesser number of victims as compared to Penang which has caused the evacuation process faster and smoother. The report also says that a group of hikers were stranded in a recreation area as they are unable to cross the river due to strong currents.

Figure 1.1: The area normally affected by flood

Figure 1.2: Flood 2017 in Rantau Panjang, Terengganu

3

Figure 1.3: Flood 2017 in Kota Bharu, Kelantan

Figure 1.4: Evacuation During Flood at Penang, 2017

There are three levels of disaster management authorities in Malaysia, the first is the National Disaster Management and Relief Committee, followed by the State Disaster Management and Relief Committee, and lastly the District Disaster Management and Relief Committee (DDMRC) [4]. However, there is often lack of coordination between these three levels of management committees. DDMRCs are represented by