DESIGN AND OPTIMIZATION OF 22 NM NMOS DEVICE HIGH-K/METAL GATE WITH BI-LAYER OF GRAPHENE

SUHAIL FIRAS BIN ROSLI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

DESIGN AND OPTIMIZATION OF 22 NM NMOS DEVICE HIGH- K/METAL GATE WITH BI-LAYER OF GRAPHENE

SUHAIL FIRAS BIN ROSLI

This report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > **JUNE 2018**

C Universiti Teknikal Malaysia Melaka

	OTTE TELEVITIZATI MATANZOLA METAIZA			
UTEM FAKULTI KEJUT	SITI TEKNIKAL MALAYSIA MELAKA Teraan elektronik dan kejuruteraan komputer Orang pengesahan status laporan PROJEK SARJANA MUDA II			
Tajuk Projek : <u>DESIGN</u>	N AND OPTIMIZATION OF 22 NM			
NMOS	DEVICE HIGH K/METAL GATE WITH ER OF GRAPHENE			
-	<u>LI</u> mengaku membenarkan laporan Projek erpustakaan dengan syarat-syarat kegunaan			
 Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi. Sila tandakan (✓): 				
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)			
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.			
TIDAK TERHAD				
	Disahkan oleh:			
(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)			
Alamat Tetap: <u>No 39, Jalan</u> <u>Kebangsaan 54,</u> <u>Taman</u> <u>Universiti,</u> <u>81300,Skudai</u> <u>Johor Bahru.</u>				
Tarikh :	Tarikh :			

*CATATAN: Jika lapora O Universiti Teknikal Malaysia Melaka da pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "Design And Optimization of 22 nm NMOS device High k/Metal Gate With Bi-Layer Of Graphene" is the result of my own work except for the quotes as cited in the references.

Signature	:
Author	: SUHAIL FIRAS BIN ROSLI
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:
Supervisor Name	: DR. AFIFAH MAHERAN BINTI ABDUL HAMID
Date	:

DEDICATION

Special dedicate to my family, supervisor and all my fellow friends in helping me to accomplish this report.

ABSTRACT

This project is based on simulation and program development of NMOS device performance by adding a bi-layer of graphene by using Silvaco software. This project exhibits general structure of the simulation for the 22 nm NMOS device after simulated by ATHENA and ATLAS module. ATHENA is the Silvaco process simulator used for device fabrication tool while ATLAS simulation module performs the device simulator procedures for electrical characteristics. These two simulator are combined with Taguchi Method in order to optimize the process parameter. Silicon Dioxide is replaced with high-k material which is Titanium Dioxide and replaced polysilicon with metal gate which is tungsten silicide. As transistor is reduce in size, the thickness also decreased to increase the gate capacitance. As the thickness of high-k metal gate material scale to 22 nm, the leakage current will increase drastically due to channel tunneling which lead to high power consumption and lower device reliability. Therefore, replacing the traditional gate material with high-k metal gate allows gate capacitance to increase without any correlation with leakage effects.

ABSTRAK

Projek ini adalah berdasarkan kepada simulasi dan pembangunan prestasi peranti NMOS dengan menambah satu lapisan graphene dengan menggunakan sistem perisian Silvaco. Projek ini mempamerkan struktur umum untuk 22 nm peranti NMOS selepas disimulasi menggunakan modul ATHENA dan ATLAS. ATHENA ialah simulator proses Silvaco yang digunakan untuk alat fabrikasi peranti sementara modul ATLAS sebagai prosedur simulator peranti untuk ciri-ciri elektrik. Kedua-dua simulator ini akan digabungkan dengan Kaedah Taguchi untuk mendapatkan parameter proses yang optimum. Silikon Dioksida digantikan dengan bahan High-k iaitu Titanium Dioksida manakala poli-silikon digantikan dengan get logam iaitu silisida tungsten. Oleh kerana saiz transistor dikurangkan, ketebalan juga berkurang untuk meningkatkan kapasitansi get. Ketebalan get logam high-k dikurangkan hingga 22 nm akan menyebabkan arus kebocoran meningkat secara drastik lalu mengakibatkan terowong saluran yang membawa kepada penggunaan kuasa yang tinggi dan kebolehpercayaan peranti yang lebih rendah. Oleh itu, menggantikan get tradisional dengan get logam high-k membolehkan kapasitansi pintu meningkat tanpa sebarang korelasi dengan kesan kebocoran arus.

ACKNOWLEDGEMENTS

Gratitude for the Almighty, all praised for the Most Merciful which I believe has guided me throughout this experiences. Without His guidance, I am completely hopeless.

.Next, I would like to express my deepest appreciation to all those who provided me the possibility to complete this report. A special gratitude I give to my final year project supervisor, Dr. Afifah Maheran Binti Abdul Hamid and my cosupervisor, Dr. Fauziyah Binti. Salehuddin, whose contribution in stimulating suggestions and encouragement, helped me to coordinate my project especially in writing this report.

Lastly, I would like to express my deepest gratitude towards my parents, family for giving me full support and always encourage me to accomplish this journey. Furthermore, thank you to all my friends for the never ending moral support. I hope this project is beneficial in needs.

TABLE OF CONTENTS

Declaration	
Approval	
Dedication	
Abstract	i
Abstrak	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	viii
List of Tables	X
List of Symbols and Abbreviations	xi
List of Appendices	xiii
CHAPTER 1 INTRODUCTION	1
1.1 Background of study	1

1.2	Problem Statement	4	
1.3	Objectives	4	
1.4	Scope of Project	5	
1.5	Organization of report	6	
CHA	APTER 2 LITERATURE REVIEW	7	
2.1	MOSFET Transistor	11	
	2.1.1 Basic operation	11	
	2.1.2 NMOS Fabrication process	13	
2.2	Graphene	15	
2.3	High-k gate dielectric	17	
2.4	Metal Gate Electrode	18	
2.5	Down Scaling	19	
2.6	Halo Implantation		
CHA	APTER 3 METHODOLOGY	22	
3.1	Flow of project	22	
3.2	Virtual Fabrication of 22nm Bilayer Graphene NMOS	24	
3.3	Semi Analytical Approach for Bilayer Graphene	25	
3.4	Silvaco software	25	
	3.4.1 ATHENA Simulator	27	
	3.4.2 ATLAS Simulator	27	

v

3.5	Fabrication Steps	28
	3.5.1 Silicon Substrate	28
	3.5.2 Mesh and Substrate material establishment	28
	3.5.3 Well Oxidation	29
	3.5.4 Trenching and gate oxide growth	30
	3.5.5 Threshold voltage adjustment implantation	31
	3.5.6 High-k dielectric deposition	32
	3.5.7 Halo Implantation	33
	3.5.8 Sidewall spacer	34
	3.5.9 Source/drain implantation	35
	3.5.10 Pattern Source and Drain contact and compensate implantation	36
	3.5.11 Aluminum metallization	37
	3.5.12 Aluminum Etching	38
	3.5.13 Adding bi-layer graphene	38
3.6	Taguchi Method	39
СНА	PTER 4 RESULTS AND DISCUSSION	41
4.1	Simulation Result of Structure	41
	4.1.1 Structure 22nm NMOS with bi-layer of graphene	42
4.2	Taguchi Orthogonal L9 Array Method	46
	4.2.1 Analysis Signal-to Noise (S/N) Ratio for V_{TH} and I_{OFF}	47

APPI	ENDICI	ES	60
REFI	ERENC	YES	55
5.2	Recommendations 5		
5.1	Conclu	ision	53
CHA	PTER 5	5 CONCLUSION AND FUTURE WORKS	53
	4.2.3	Confirmation of Optimum Factor	50
	4.2.2	Analysis of Variance (ANOVA) for V_{TH} and I_{OFF}	49

LIST OF FIGURES

Figure 1.1: Scope of the project	5
Figure 2.1 : MOSFET structure for NMOS and PMOS	11
Figure 2.2 : NMOS fabrication steps [7]	13
Figure 3.1: Project Flow Chart	23
Figure 3.2: Flow Chart of Research Study	26
Figure 3.3: P-type substrate doping concentration	29
Figure 3.5: 22 nm structure after oxide deposition	30
Figure 3.7: 22 nm NMOS structure after gate oxide growth	31
Figure 3.9 : 22 nm NMOS structure after V_{TH} adjustment implantation	32
Figure 3.11: 22 nm NMOS structure after high-k deposition	33
Figure 3.13: 22 nm NMOS structure after halo implantation	34
Figure 3.15: 22 nm NMOS structure after sidewall spacer	35
Figure 3.17: 22 nm NMOS structure after source/drain implantation	36
Figure 3.19: 22 nm NMOS structure after Pattern Source and Drain contact and compensate implantation process	37
Figure 3.21: 22 nm NMOS structure after Aluminum metallization	37

Figure 3.23: 22 nm NMOS structure after aluminum etching	38
Figure 3.25: 22 nm NMOS structure with bi-layer of graphene	39
Figure 4.1: Completed NMOS Planar Transistor with zoom up of a 22 nm gate length	42
Figure 4.2: Addition of bi-layer graphene on MOSFET structure	43
Figure 4.3: The doping profile of the 22 nm n-type MOSFET	43
Figure 4.4: Graph of drain current, $I_D(A)$ against drain voltage , $V_{DS}(V)$.	44
Figure 4.5: Graph of I_D -V _G for 22 nm NMOS device	45

LIST OF TABLES

Table 1 Standard L9 orthogonal array	40
Table 4.1: Results of device characteristics for 22nm NMOS device	45
Table 4.2: Process parameter and their levels	46
Table 4.3: Noise factor and their levels	47
Table 4.4: V _{TH} Results for Bilayer Graphene NMOS	47
Table 4.5: I _{OFF} Results for Bilayer Graphene NMOS	47
Table 4.6: S/N response for V_{TH}	49
Table 4.7 : S/N response for I _{OFF}	49
Table 4.8: Results of ANOVA for V _{TH}	50
Table 4.9: Results of ANOVA for I _{OFF}	50
Table 4.10: Best Setting of process parameters (V_{TH})	51
Table 4.11: Results of confirmation experiment with added noises.	51
Table 4.12: Best Setting of process parameters (I _{OFF})	52
Table 4.13: Results of confirmation experiment with added noises.	52
Table 15 Gantt Chart	62

LIST OF SYMBOLS AND ABBREVIATIONS

SiO ₂	:	Silicon Dioxide
TiO ₂	:	Titanium Dioxide
WSiX	:	Tungsten Silicide
FET	:	Field Effect Transistor
Si	:	Silicon
MOSFET	:	Metal-oxide semiconductor field effect transistor
EOT	:	Electrical Oxide Thickness
V_{TH}	:	Threshold voltage
I _{off}	:	Leak current
ITRS	:	International Technology Roadmap for Semiconductor
V _{GS}	:	Gate source voltage
V _G	:	Gate voltage
LPCVD	:	low pressure chemical vapor deposition process
BPSG	:	Borophosphosilicate Glass
PMD	:	pre-metal dielectric
CF	:	Control Factor

- NF : Noise Factor
- High-k : High dielectric constant k
- EOT : Electrical Oxide Thickness
- SOS : Silicon-on-Sapphire
- OA : Orthogonal Array
- S/D : Source/Drain

LIST OF APPENDICES

Appendix A: Source code	60
Appendix B : Gantt Chart	62

CHAPTER 1

INTRODUCTION

This chapter presents a short introduction about the project. First, the background of the project is explained and is followed by the problem statement of project, the objectives of the project. Based on the problem statement and the objective of the project, the scope or limitation of the project is identified. Finally, the organization of the report is clarified.

1.1 Background of study

This research execution is based on simulation and program development of NMOS device performance and reliability related phenomena by adding a bi-layer of graphene by using TCAD Silvaco software. In this project, we replaced Silicon Dioxide (SiO₂) with high-k materials which is Titanium Dioxide (TiO₂) and replaced polysilicon with metal gate which is tungsten silicide (WSi_X). The reduction of the

size of the dimensions of MOSFETs, is known as scaling. Scaling gate dielectric thickness of the device can lead to leakage current. Shifting a high-k material can help solving most of the problems such as decreasing gate leakage current and require an increased capacitance gate dielectric to control short channel effects. The expected results of this study are all objectives of this project which is to design and simulate a bi-layer graphene on high-k / metal gate on 22 nm NMOS device using SILVACO software is achieved in order to produce high reliable NMOS in small size.

Graphene could be a thin layer of pure carbon atoms that are bonded together in a very hexangular honeycomb lattice. It is the thinnest material better-known, however, it's passing robust, light-weight and versatile. It conducts heat better than diamond and will conduct electricity better than silver. This unique combination of properties makes graphene an ideal platform for flexible electronics [1].

A typical silicon technology is approaching its basic material and physical limits with continuous scaling, there's a growing push to seem for brand spanking new platform to design circuits or device for nanoelectronic applications. One in all the foremost necessary properties of graphene could be a robust electric field result that ends up in an electrostatically tunable carrier density within the vary of n $< 10^{14}$ cm. Commonly with high carrier mobility for both electrons and holes (as high as 10^4 cm²/Vs at room temperature), this attracts a lot of attention to graphene as a possible material for a future high-speed field effect transistor (FET) [2].

Silicon dioxide (SiO_2) has been used because of the gate dielectric material over decades, and therefore the current device scaling trend needs the film thickness. In this case, the tunneling current can increase exponentially resulting in increased power dissipation. The increase in power dissipation would be a critical problem

because of the thermal management issues in submicron device structures. Moreover, the use of thin oxide films is not reliable [3]. To overcome this problem many new high-k dielectric materials have been recently introduced as a replacement for SiO₂ gate dielectric film. Many metal oxides (Al₂O₃, ZrO₂, HfO₂, TiO₂, etc.) and ferroelectric materials are being reviewed and investigated as competitors to replace SiO₂. However, the combination of polysilicon (poly-Si) and high-k gate material is still relevant and can still be used in NMOS transistors [3].

The reduction of the dimensions of the scale of MOSFETs is usually called scaling. Scaling gate dielectric thickness of the device will result in discharge current (leakage current). High-k dielectrics are employed in semiconductor manufacturing processes that typically accustomed replace a silicon oxide gate insulator or another dielectric layer of a tool. The term high-k dielectrics refer to a fabric with a high dielectric constant k (as compared to silicon oxide). Shifting a high-k material will facilitate resolution most of the issues resembling decreasing gate leakage current and need an increased capacitance gate dielectric to regulate short channel effects. Smaller transistors need an increased capacitance gate dielectric to regulate short channel effects.

In this modern era, graphene has become a promising radiance in the horizon of fabrication technology, due to some of its distinctive electronic properties like zero band gap, high saturation velocity, higher electrical conductivity and mobility. Graphene could be an ideal use in the future because of electrons transfer at high speed. It also has an extraordinary thermal, optical and mechanical properties such as high thermal conductivity, optical transparency, flexibility and thinness. Graphene based devices requested to be thought as a potential selection for post Si based fabrication technology.

1.2 Problem Statement

In trend of world competition, modern semiconductor industries have adjusted their production method to be a lot of economic and competitive. Regarding from that, a lot of advanced technologies got to scale down the MOSFET into nanometer. Since MOSFET are often scaled right down to a smaller dimension which produce higher performance, at the same time gate length and oxide thickness also reduce. Scaling is that the distinctive property of MOSET because it allows to decrease the size in nanoscale region. Scaling permits the reduction in dimension in all aspect but scaling cannot go on forever. There is limit of scaling beyond that the device does incorporate unexpected result [4]. As the thickness scales of reduced, leak currents because of tunneling increase drastically, resulting in high power consumption and reduce device reliability. Therefore, substitute SiO₂ with a high-k material allows increased in gate capacitance. Shifting a high-k material facilitate determination most of the issues such as decreasing gate leakage current and require an increased capacitance gate dielectric to control short channel effects. Smaller transistors require an increased capacitance gate dielectric to control short channel effects. Therefore, this device is introduced due to overcome the problems.

1.3 Objectives

- To design and simulate a bi-layer graphene on high-k / metal gate on 22 nm NMOS device using SILVACO
- ii. To analyze and optimization the electrical characteristics of device by using Taguchi L9 orthogonal array method

4

1.4 Scope of Project

Figure 1.1: Scope of the project

This analysis execution relies on simulation and program development and downscaling a 22 nm of planar NMOS device performance and dependability related phenomena by adding a bi-layer graphene by using TCAD Silvaco software. The electrical characteristics of this device are analyzed by using the L9 experimental array of Taguchi method. Athena is the Silvaco process simulator used for device fabrication whereas ATLAS simulation module performs the device simulator procedures for electrical characteristics. These two simulators can be combined with