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ABSTRACT 

Emotion classification through facial expression or speech intonation is not reliable 

as human can hide their emotion when expressing their feelings. Therefore, a deep 

learning technique, Convolutional Neural Network (CNN) is implemented and 

optimized in this project to analyze human emotion in a more reliable manner. 

Experimental paradigm is designed by using audio-visual stimuli selected from IAPS 

and IADS-2 database to acquire EEG data with different emotions. The proposed CNN 

algorithm is trained on the collected EEG data and then validated by using an open 

source dataset (SEED). The proposed CNN algorithm achieves the best accuracy of 

65% (2 classes of emotion) and 82% (3 classes of emotion) form EEG data collected 

in the lab and SEED dataset, respectively.
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ABSTRAK 

Klasifikasi emosi melalui ungkapan wajah atau ucapan intonasi tidak boleh 

dipercayai kerana manusia boleh menyembunyikan emosi mereka ketika menyatakan 

perasaan mereka. Oleh itu, satu teknik “deep learning”, iaitu Convolutional Neural 

Network (CNN) telah diguna dan diubahsuai dalam projek ini untuk menganalisis 

emosi manusia dengan cara yang lebih boleh dipercayai. Eksperimen dirancangkan 

dengan menggunakan rangsangan “audio-visual” yang dipilih dari pangkalan data 

IAPS dan IADS-2 untuk memperolehi isyarat EEG dengan emosi yang berbeza. 

Algoritma CNN yang dicadangkan telah dilatih dengan data EEG yang dikumpul 

dalam makmal dan kemudian disahkan dengan menggunakan dataset sumber terbuka 

(SEED). Algoritma CNN yang dicadangkan mencapai ketepatan terbaik dengan 65% 

(2 kelas emosi) dan 82% (3 kelas emosi) daripada data EEG yang dikumpulkan dalam 

makmal dan SEED. 
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CHAPTER 1  

INTRODUCTION  

This chapter consists of five sections. The overview of the project is firstly 

presented in this chapter. The objectives of this study are stated in section 1.2. Section 

1.3 is the problem statement regarding to the study. Section 1.4 discusses the scope of 

work. The thesis outline is presented in the final section of this chapter. 

1.1 Project Overview 

Emotions can be defined as sensory projection to stimuli which involves thoughts, 

physiological changes and expression of feelings [1]. In recent years, emotion 

recognition system playing an increasingly important role in enhancing the experience 

of human-machine interaction. For instance, the importance of emotion recognition in 

human-machine interaction has clearly shown by a human-like robot named Sophia. 

Sophia is a social robot created by Hanson Robotics which is able to recognize and 
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process emotional data during conversation with human [2]. The model of Sophia is 

shown in Figure 1.1. 

 

Figure 1.1: The model of Sophia [2] 

 

 Various research has been carried out to study human emotions. Generally, 

human emotion can be classified through the external appearance clues and the “inner” 

emotion reflected by brain activities.  Emotion detection through external clues such 

as text, speech intonation and facial expression are commonly used to classify emotion 

as it is a direct reflection of emotion which is able to be easily detected. On the other 

hand, emotion classification through the “inner” emotion reflected in 

electroencephalograms (EEG) signal with the aid of deep learning technique becoming 

popular in recent years as EEG decoding plays an important role in most brain 

computer interface (BCI) for clinical applications. The researches revealed that the 

characteristic of EEG signals with high temporal resolution allow it to react to 

emotional stimuli in millisecond. This indicate that emotion classification using EEG 

signal is a more reliable approach as compared to the external appearance clues that 

can be hidden and faked in expression [3].  

 In light of this, a deep learning technique, convolutional neural network (CNN) 

algorithm is implemented in this project to decode EEG signals with different 



3 

 

emotional states. This project begins with experimental design for EEG signal 

acquisition. The raw EEG signals will be preprocessed and rearranged before fed into 

the proposed CNN architecture to be classified into different emotional states. 

 

 

Figure 1.2: Emotion detection through external clues [4] 

 

Figure 1.3: Emotion detection through EEG signal 
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1.2 Objectives 

There are three objectives in this project which listed as below: 

i. To design and develop an experiment to acquire EEG signal with different 

emotions. 

ii. To analyze and optimize the parameters of CNN architecture for EEG 

emotion classification. 

iii. To validate the CNN architecture for EEG emotion classification in terms 

of classification accuracy. 

1.3 Problem Statement 

Emotions detection through text, speech tone and facial expression are not 

reliable enough as human can fake their expression of feelings. To cope with this 

situation, an EEG-based emotion classification system has been designed to classify 

human emotion by using EEG signal. Nevertheless, the EEG-based emotion 

classification system in study [5] only yield about 59% accuracy with the EEG data 

collected in the lab. Therefore, this project is aims to develop and optimize the 

parameters of the CNN model in order to improve the performance for EEG emotion 

classification. Different modality of stimuli will be designed to induce emotion for 

EEG data acquisition. 

Table 1.1: Properties of EEG data in study [5] 

Stimuli Picture (IAPS) 

No. emotional category 2 

Classification accuracy 59% 
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1.4 Scope of Work 

This project is intended to implement a CNN algorithm that able to classify 

different emotions by using EEG signal as input. Experimental paradigm is designed 

to induce two classes of emotion (positive and negative) for EEG signal acquisition 

purpose. MATLAB script is written for preprocessing of the acquired raw EEG signal. 

The implementation of CNN algorithm is done in python (v2.7.12) with TensorFlow 

(V1.0.0) as framework. 

The CNN algorithm is trained with both EEG data collected in the lab as well 

as an open source dataset (SEED). The categorization of emotion for both EEG data 

collected in the lab and SEED are based on dimensional model of emotion. There are 

two classes of emotion included in the EEG data collected in the lab, which is positive 

and negative emotions. On the other hand, a total of three classes of emotions, which 

is positive, neutral, and negative emotions are included in SEED dataset. The 

properties of datasets used in the project are summarized in Table 1.2. 

Table 1.2: The properties of dataset used in the project 

Dataset properties EEG data collected in 
the lab 

Open source dataset 
(SEED) 

Emotion model Dimensional model  Dimensional model 

Stimuli Picture (IAPS) and 
audio clips (IADS-2) Movie clip 

Category of emotion Two emotions (positive 
and negative) 

Three emotions 
(positive, neutral and 

negative) 
 

 

 


