DESIGN AND CHARACTERIZATION OF STRAIN SENSOR FOR LANDSLIDE EARLY WARNING DETECTION VIA IOT PLATFORM

NUR ALIA BATRISYIA BINTI ISKANDAR MD ZAINALABIDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

DESIGN AND CHARACTERIZATION OF STRAIN SENSOR FOR LANDSLIDE EARLY WARNING DETECTION VIA IOT PLATFORM

NUR ALIA BATRISYIA BINTI ISKANDAR MD ZAINALABIDIN

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2018

UNIVERSI اونيورم سيتي تيكنيكل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	ITI TEKNIKAL MALAYSIA MELAKA raan elektronik dan kejuruteraan komputer rang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek : <u>DESIGN</u>	AND CHARACTERIZATION OF
STRAIN WARNIN Sesi Pengajian : 2017/2013	SENSOR FOR LANDSLIDE EARLY IG DETECTION VIA IOT PLATFORM 8
Saya <u>NUR ALIA BATRISYIA B</u> mengaku membenarkan laporan Perpustakaan dengan syarat-syarat ke	INTI ISKANDAR MD ZAINALABIDIN Projek Sarjana Muda ini disimpan di egunaan seperti berikut:
 Laporan adalah hakmilik University Perpustakaan dibenarkan membu Perpustakaan dibenarkan membupertukaran antara institusi pengaj Sila tandakan (✓): 	siti Teknikal Malaysia Melaka. at salinan untuk tujuan pengajian sahaja. buat salinan laporan ini sebagai bahan ian tinggi.
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)
Alamat Tetap: LOT 3572, KAMPUNG JAMUAN, 33600 ENGGOR, PERAK	
Tarikh : <u>01 Januari 2010</u>	Tarikh : <u>01 Januari 2010</u>

DECLARATION

I declare that this report entitled "Design and Characterization of Strain Sensor for Landslide Early Warning Detection via IoT Platform" is the result of my own work except for quotes as cited in the references.

Signature	:
Author :	NUR ALIA BATRISYIA BT. ISKANDAR MD ZAINALABIDIN
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:	
Supervisor Name	:	<u>EN MAZRAN BIN ESRO</u>
Date	:	

DEDICATION

There have been many inspirer who have walked alongside me during the last four years until I finished my final year project. They have guided me, placed opportunities in front of me and showed me the doors that might be useful to open. I would like to thank each and every one of them. I would especially like to thank Mr. Mazran bin Esro, my Final Year Project supervisor. Without your encouragement the road would have seemed lost and lonely place. I would also like to thank Universiti Teknikal Malaysia Melaka, for their financial and practical support. A very big thank you must also go to my parent for their mentally supports. Thank you for believing in me.

ABSTRACT

Landslides are among several phenomenon which causes serious damage to roadside, highways and properties. This happens usually during monsoon season where heavy rainfall could trigger the landslide and causing damages without warning. Landslides near the highways could cause injuries and fatal accidents to the road user. Therefore, the land near these critical areas need to be closely monitored. This project involved the design and characterization the strain sensor to detect the soil movement and provide early warning of possible landslide to happen. The soil movement sensor is designed using strain gauge and supported by vibration sensor with amplifiers. The system will implemented and monitored via IoT platform. Four strain gauges are connected in the form of Wheatstone-bridge arranged on a steel rod to sense the compression and tension difference translated in the form of voltage. Then the data are transmitted to IoT platform for analysis to predict the soil movement which could indicate a possible landslide.

ABSTRAK

Tanah runtuh adalah antara beberapa fenomena yang menyebabkan kerosakan serius di tepi jalan, lebuh raya dan hartanah. Ini berlaku biasanya semasa musim tengkujuh di mana hujan lebat boleh mencetuskan tanah runtuh dan menyebabkan kerosakan tanpa amaran. Tanah runtuh berhampiran lebuh raya boleh menyebabkan kecederaan dan kemalangan maut kepada pengguna jalan raya. Oleh itu, tanah berhampiran kawasan kritikal ini perlu dipantau dengan teliti. Projek ini melibatkan reka bentuk dan pencirian sensor ketegangan (strain sensor) untuk mengesan pergerakan tanah dan memberi amaran awal kemungkinan tanah runtuh akan berlaku. Sensor pergerakan tanah direka menggunakan tolok terikan (strain gauge) dan disokong oleh sensor getaran dengan penguat. Sistem ini akan dilaksanakan dan dipantau melalui platform IoT. Empat tolok terikan disambungkan dalam bentuk Wheatstone-bridge yang disusun pada batang keluli untuk merasakan pemampatan dan ketegangan yang diterjemahkan dalam bentuk voltan. Kemudian data dihantar ke platform IoT untuk analisis bagi meramalkan pergerakan tanah yang mungkin menyebabkan kemungkinan tanah runtuh.

ACKNOWLEDGEMENTS

For the ancestors who paved the path before me upon whose shoulder I stand. This is also dedicated to my family and friends who supported me on this journey. Thank you.

I would like to express my deepest gratitude to my supervisor, Mr. Mazran bin Esro for his unwavering support, collegiality, and mentorship throughout this

project.

Once again, thank you.

TABLE OF CONTENTS

Decla	aration	
Appr	oval	
Dedi	cation	
Abst	ract	i
Abst	rak	ii
Ackn	owledgements	iii
Table	e of Contents	iv
List (List of Figures vi	
List (List of Tables	
List (of Symbols and Abbreviations	xii
List (of Appendices	xiii
СНА	PTER 1 INTRODUCTION	20
1.1	Project Overview	20
1.2	Problem Statement	21
	1.2.1 Table of Event Chronology	22
1.3	Objectives	24

1.4	Scope of Works		
1.5	Project Significance		
1.6	Project Flow Chart		
1.7	Project Prototype	28	
1.8	Thesis Structure	31	
СНА	PTER 2 BACKGROUND STUDY	32	
2.1	Background Study	32	
2.2	Problem Statement in Landslide Monitoring	37	
2.3	Critical Review	37	
СНА	PTER 3 METHODOLOGY	39	
3.1	Methodology Flow Chart	39	
	3.1.1 Research Methodology Flow Chart	41	
	3.1.2 Project Methodology Process Flow Chart	43	
	3.1.3 Cost of Project	45	
3.2	Component Selection	45	
	3.2.1 Arduino Uno	46	
	3.2.2 WiFi Shield Cytron	47	
	3.2.3 Strain Gauge	48	
	3.2.4 AD623 Amplifier (for Analysis in Lab)	48	
	3.2.5 HX711 Amplifier (for Arduino IoT)	49	

v

	3.2.6	SW-420 Vibration Sensor	51
3.3	Theor	ry and Equation Related to Project	51
СНА	PTER	4 RESULTS AND DISCUSSION	55
4.1	Resul	t and Discussion	55
	4.1.1	Sensor Testing Using Proteus	55
		4.1.1.1 Strain Gauge	55
		4.1.1.2 Vibration Sensor SW420	58
	4.1.2	Analyse for Sensor Placement	58
		4.1.2.1 Result of Output for Case A	60
		4.1.2.2 Result of Output for Case B	62
	4.1.3	Experimental Analysis for Strain Gauge Functionality	63
		4.1.3.1 Result of Output of Strain Gauge (ruler)	65
		4.1.3.2 Result of Output of Strain Gauge (stainless steel rod)	67
	4.1.4	Output Observation of Sensor using IoT Platform	71
		4.1.4.1 Circuit Diagram of Sensors	71
		4.1.4.2 Source Code of Sensors	72
		4.1.4.3 Result of Sensor using ThingsView and Serial Monitor	72
4.2	Overa	all Discussion	75
СНА	PTER	5 CONCLUSION AND FUTURE WORKS	76
5.1	Conc	lusion	76

vi

5.2 Future Work		
REF	FERENCES	79
APP	PENDICES	82

LIST OF FIGURES

Figure 1-1: Flow chart of project	27
Figure 1-2: Strain gauges attached to rod under the land	28
Figure 1-3: Rod with sensors planted in miniaturized land	29
Figure 1-4: Case 1	30
Figure 1-5: Case 2	30
Figure 2-1: Result screenshot from Article of Cristian Zet, Cristian Fosalau, Daniel Petrisor and Catalin Damian [4].	35
Figure 2-2: Result taken from article of Cristian Fosalau, Cristian Zet, Petrisor[5]	Daniel 36
Figure 3-1: Research methodology flow chart	42
Figure 3-2: Project methodology flow chart	43
Figure 3-3: Pinout of Arduino Uno[6]	46
Figure 3-4: Cytron WiFi Shield[7]	47
Figure 3-5: Strain Gauge Sensor[8]	48
Figure 3-6: AD623 Pin Configuration[9]	49
Figure 3-7: Pin Description from Table 1 in HX711 datasheet [10]	50
Figure 3-8: Arduino Vibration Sensor SW-420	51
Figure 3-9: Strain gages are configured in Wheatstone bridge circuits to detec	rt small

Figure 3-9: Strain gages are configured in Wheatstone bridge circuits to detect small changes in resistance. 52

Figure 4-1: Pin configuration of INA122	56
Figure 4-2: Result of strain gauges reading using Proteus	56
Figure 4-3: Result of output reading when R3=10100	57
Figure 4-4: Result of output reading when R3=10300	57
Figure 4-5: Result of SW420 connection functionality using Proteus	58
Figure 4-6: Case A (vertically align strain gage)	59
Figure 4-7: Case B (strain gage install around ruler)	60
Figure 4-8: Align strain gauges installed as Case A	60
Figure 4-9: Result of load cell Case A when the ruler is bending	61
Figure 4-10: Forces acted and formed on the deformed ruler	62
Figure 4-11: Both-side strain gauge installed as Case B	62
Figure 4-12: Result of load cell Case B when the ruler is bending	63
Figure 4-13: Circuit for AD623 installation[9]	64
Figure 4-14: Arrangement of circuit on bread board	65
Figure 4-15: Result of minimum value of strain gauge (at 0 N)	65
Figure 4-16: Result of maximum value of strain gauge (at >0 N)	66
Figure 4-17: Load placed on rod (105 g)	67
Figure 4-18: Result of output voltage for 105 g load	67
Figure 4-19: Result of output voltage for 35 g load	68
Figure 4-20: Result of output voltage for 15 g load	68
Figure 4-21: Result of output voltage for 10 g load	69
Figure 4-22: Result of output voltage for 5 g load	69
Figure 4-23: Graph of load versus voltage	70

Figure 4-24: Circuit diagram of strain gauge, HX711 and SW420	71
Figure 4-25: Coding run in Arduino software	72
Figure 4-26: Serial monitor sensor result	73
Figure 4-27: Sensor reading result using Thingspeak (IoT)	74

Х

LIST OF TABLES

Table 1.1: Tragedies Chronology	22
Table 2: Critical review of previous project articles	37
Table 3: Result of load and output voltage	70

LIST OF SYMBOLS AND ABBREVIATIONS

- IoT : Internet of Things
- LED : Light-emitting Diode
- PGA : Programmable Gain Amplifier
- ARM : Advanced RISC Machines
- PWM : Pulse Width Modulation
- USB : Universal Serial Bus
- AC : Alternating Current
- DC : Direct Current
- GPIO : General-purpose Input/Output
- RISC : Reduced Instruction Set Computer

LIST OF APPENDICES

Appendix A: Source of Code

.....

84

CHAPTER 1

INTRODUCTION

Overview of this project, objective and the scope of work of the project are discussed in this chapter. Problem statement and the objectives will be proven and analysis with appropriate methodology. Thus, in this chapter also involved the importance or significant of the project.

1.1 **Project Overview**

This project involved the design and characterization the strain sensor to detect the soil movement and provide early morning of possible landslide to happen. The sensors are designed with strain gauge, vibration sensor as additional sensor and amplifiers and requires proper calibration. The data will implemented and monitored via IoT platform. Four strain gauges are connected in the form of Wheatstone-bridge and then connected to amplifier to get the result. The results are in the form of analysis in

realizing the objectives. The sensor are placed in different configuration are connected to AD623 amplifier and multimeter. Then the strain gauge are characterized and analyzed to detect the soil movement before a landslide occur. The result are obtained as the strain gauges connected to HX711 and Arduino microcontroller to perform the graph presentation using IoT platform.

1.2 Problem Statement

A landslide can lead to demolition and well-known geo-hazard that constantly affecting many countries especially during monsoon season. Two decades ago, rainfall had triggered many landslides throughout Malaysia that struck the citizens, mostly near the hillside areas where number of properties are damaged, human death and injuries have been reported. For instance, landslide tragedy that occurred at Genting Highland on 30 June 1995 had killed 20 lives and more than 20 persons injured. Another landslide incidents occurred in North-South Expressway near Gua Tempurung had caused extremely big loss and the cost of repair amount to ten million Ringgit Malaysia based in newspaper article, Utusan Malaysia, 2002a. There was an incident about the residents of Taman Idaman Serendah have been evacuated to Sekolah Rendah Agama Serendah, Nov 26, 2016. Therefore it is important to take a necessary action provided the residents were given an early warning. Solution to this issue is proposed by this project with a title 'Design and Characterization of Strain Sensor for Landslide Early Warning Detection via IoT Platform'. This is because this technology can give the early warning detection of landslide by using IoT platform.

1.2.1 Table of Event Chronology

 Table 1.1: Tragedies Chronology[1]

DATE	INCIDENT	
1 May 1961	Landslide happened in Ringlet, Cameron Highlands, Pahang.	
21 October	The man-made Pantai Remis landslide caused a new cove to be	
1993	formed in the coastline.	
11 December	48 people were put to death when a block of the Highland Towers	
1993	collapsed at Taman Hillview, Ulu Klang, Selangor.	
30 June 1995	20 people were terminated in the landslide at Genting Highlands	
	at the slip road near Kuala Lumpur–Karak Expressway in Karak	
	Highway.	
6 January	Landslide in the North-South Expressway (NSE) close to Gua	
1996	Tempurung, Perak.	
29 August	A mudflow near Pos Dipang Orang Asli settlement in Kampar,	
1996	Perak, 44 people were killed in this tragedy.	
15 May 1999	A landslide near Bukit Antarabangsa, Ulu Klang, Selangor. Most	
	of the Bukit Antarabangsa civilians were trapped under the	
	rubble. Only two victims survived — an Indonesian maid and a	
	child.	
20 November	The Affin Bank bungalow of chairman General (RtD) Tan Sri	
2002	Ismail Omar collapsed due to an early morning landslide in with	
	a fatality in his family at Taman Hillview, Ulu Klang, Selangor.	
December	Rock fall in the New Klang Valley Expressway (NKVE) near the	
2003	Bukit Lanjan interchange caused the expressway to be closed for	
	more than half a year.	
31 May 2006	Four people were terminated in the landslides at Kampung Pasir,	
	Ulu Klang, Selangor.	
26 December	Two people, the villagers were buried alive in landslide, which	
2007	demolished nine wooden houses in Lorong 1, Kampung Baru	
	Cina, Kapit, Sarawak.	

12 February	One contract worker was killed in a landslide at the construction
2009	site for a 43-storey condominium in Bukit Ceylon, Kuala
	Lumpur.
21 May 2011	16 people of 15 children and a caretaker of an orphanage were
	killed in a landslide caused by heavy rains at the Children's
	Hidayah Madrasah Al-Taqwa orphanage in FELCRA
	Semungkis, Hulu Langat, Selangor.
29 Dec 2012	88 residents of bungalows, shophouses and double-storey terrace
	houses in the Puncak Setiawangsa, Kuala Lumpur were
	instructed to move out due to soil movement. A resident, Siti
	Mahfudzah Shahril, 34, said she was shocked at the sound of a
	siren and rushed out to see a landslide of about 50m high.
4 Jan 2013	Construction at the Kingsley Hill housing project at Putra Heights
	has been halted temporarily following a landslide at the site that
	caused several vehicles to be submerged in mud.
11 November	Landslide occurred at km 52.4 of the Kuala Lumpur-Karak
2015	Expressway between Lentang and Bukit Tinggi, Pahang and
	Gombak-Bentong old roads. The Lentang-Bukit Tinggi stretch
	of the expressway was closed to traffic.
26 November	A landslide occurred in Taman Idaman, Serendah, Selangor.
2016	About 340 civilians are evacuated.
21 October	- Tanjung Bungah, Penang. 11 people died due to landslide.
2017	- Kota Kinabalu, Sabah. Kinabalu Mountain cliffs. Landslide
	occured due to flood.

1.3 Objectives

The followings are objectives of the project:

- i) To characterize and analyse strain gauge sensor to detect the soil movement before a landslide.
- ii) To design and develop a technology that can detect the resistivity of landslide by using strain gauge and microcontroller.
- iii) To monitor the occurrence and resistance of landslide via IoT platform.
- iv) To analyses the effective sensors placement for optimum sensitivity.

1.4 Scope of Works

This project "Design and characterization of strain sensor for landslide early warning detection via IoT platform" is proposed to detect the possibilities of landslide occur mostly at highlands that are near houses, facilities and roads. This project aims to detect any resistances of highland movement that shows the sign of landslide and be notified through mobile device of user. The resistances will be detected and measured by using strain gauge and powered by Arduino UNO.

Basically the main components that will be implemented in this project are strain gauges, instrumentation amplifier, microcontroller of Arduino UNO, stainless steel rod and other basic components such as resistor and voltage source. The resistors in this case is crucial to make a Wheatstone bridge. The strain gauge is chosen as the best sensor for this project is because strain gauge is a sensor which the resistance are varies with any forces that are applied. It converts any force, any pressure, tension or torque and weight conversion in the form of electrical resistance which can then be measured. Strain gauges typically measure very small and precise mechanical strain. Consequently, changes in resistance are also very small and thus cannot be measured