ANALYSE THE PERFORMANCE OF SOI MOSFET DEVICE WITH DIFFERENT GATE SPACER MATERIALS

AIDA MAZIAH BINTI MANIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

ANALYSE THE PERFORMANCE OF SOI MOSFET DEVICE WITH DIFFERENT GATE SPACER MATERIALS

AIDA MAZIAH BINTI MANIN

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2018

C Universiti Teknikal Malaysia Melaka

AL MALAYS	IA ME			
TEKNIN	АКА			
ILISAS		U	IGIV	
ا ملاك	کل ملیہ	کند	ىۋىرىسىتى تىچ	

:

:

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

ANALYSE THE PERFORMANCE OF SOI MOSFET DEVICE WITH DIFFERENT GATE SPACER MATERIALS 2017/2018

Sesi Pengajian

Saya <u>AIDA MAZIAH BINTI MANIN</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

Tarikh :

SULIT*

TERHAD*

TIDAK TERHAD

31 Mei 2018

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

Disahkan oleh:

aidamaziah (TANDATANGAN PENULIS) Alamat Tetap: 111,JLN TEMENGGONG 2,36800 KAMPONG GAJAH, PERAK

(COP DAN TANDATANGAN PENYELIA)

DR. FAUZIYAH BINTI SALEHUBISIM Pensyarah Kanan Fakulti Kejuruteraan Biektrealli (ISB Kejuruteraan Kompukar Universiti Teknikal Malaysia MelakaluTek-Hang Tesh Jaya. 76100 Partici

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

Tarikh : 31 Mei 2018

) Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this report entitled "Analyse the Performance of SOI MOSFET Device with Different Gate Spacer Materials" is the result of my own work except for quotes as cited in the references.

Signature	:	aidamaziah
Author	:	AIDA MAZIAH BINTI MANIN
Date	:	31 Mei 2018

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

DEDICATION

This thesis is dedicated to my beloved parents; Manin Bin Ahmad and Zaridah Binti Shuib, and siblings whom never failed to support and encourage me to do my best.

ABSTRACT

Along with the Industrial Revolution 4.0, there has been a great demand for continual miniaturization of the Bulk-Si MOSFET device as it improves the integrated circuit (IC) in both cost per production and performance. However, scaling down MOSFET degrades the performance of the device through increasing leakage current and short channel effect (SCE). Therefore, Silicon-On-Insulator (SOI) technology has been introduced to mitigate the SCE problems. This project is executed by using Silvaco TCAD software to simulate both fabrication process and electrical characteristics for the structure of SOI MOSFET that has been designed by following the International Technology Roadmap of Semiconductor (ITRS) 2013. Furthermore, this project facilitates the improvement of performance of 19nm SOI MOSFET using high-k material as the gate spacer. Through this project, the design of 19nm SOI MOSFET with BOX layer thickness of 30nm and titanium oxide (TiO2) as the gate spacer yields the highest drive current (Ion) of 548.78μ A/µm and the lowest leakage current (Ioff) of 113.475pA/µm at the threshold voltage of 0.533V compared to other high-k materials as gate spacer and Bulk-Si MOSFET device.

ABSTRAK

Seiring dengan Revolusi Perindustrian 4.0, terdapat permintaan yang sangat tinggi bagi pengecilan peranti Bulk-Si MOSFET yang berterusan kerana ia menambahbaik litar bersepadu (IC) dari aspek kos setiap pengeluaran dan prestasi. Walau bagaimanapun, pengecilan MOSFET merendahkan prestasi peranti melalui peningkatan kebocoran arus dan kesan saluran pendek (SCE). Oleh itu, teknologi Silicon-on-Insulator (SOI) telah diperkenalkan untuk mengurangkan masalah SCE. Projek ini dilaksanakan dengan menggunakan perisian Silvaco TCAD untuk mensimulasikan proses fabrikasi dan ciri-ciri elektrik bagi struktur SOI MOSFET yang telah direka dengan merujuk Hala Tuju Teknologi Antarabangsa bagi Semikonduktor (ITRS) 2013. Tambahan pula, projek ini membantu peningkatan prestasi 19nm SOI MOSFET dengan menggunakan bahan high-k sebagai gate spacer. Melalui projek ini, reka bentuk 19nm SOI MOSFET dengan ketebalan lapisan BOX sebanyak 30nm dan titanium dioksida (TiO₂) sebagai gate spacer telah menghasilkan arus pemacu (Ion) yang tinggi iaitu 548.78µA/µm dan arus bocor (Ioff) yang rendah sebanyak 113.475pA/µm pada voltan ambang 0.533V berbanding dengan bahan high-k yang lain sebagai gate spacer dan peranti Bulk-Si MOSFET.

ACKNOWLEDGEMENTS

Foremost, All Praise to ALLAH s.w.t. the Almighty, for giving me HIS mercy, blessing, strength, chance and endurance to complete this final year project. After having a period of two semesters, writing this part would be the happiest and most rewarding moment.

I would like to express my sincere gratitude to my supervisor, Dr. Fauziyah Binti Salehuddin for the continuous support, patience, motivation, enthusiasm, and immense knowledge. She guided me in all the time of the research and writing of this thesis; I could not have imagined having a better supervisor. Besides, I would take this opportunity to thank my co-supervisor, Dr. Anis Suhaila Binti Mohd Zain, who always provides valuable guidance to complete this project.

I owe a forever gratitude to my parents and siblings, without their endless love, encouragement and support, I would never be able to achieve what I have today. They have been a wonderful inspiration for me to complete this thesis and my final year's study.

Last but not least, I would like to thank my friends, for their presences, advices and assistances, I enjoyed finishing my degree study and my final year project.

TABLE OF CONTENTS

Declaration	
Approval	
Dedication	
Abstract	i
Abstrak	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	ix
List of Tables	xiii
List of Symbols and Abbreviations	xiv
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Objectives	4

1.3	Problem Statement	5
1.4	Scope of Project	6
1.5	Project Significance	6
1.6	Report Structure	7
CHA	PTER 2 BACKGROUND STUDY	9
2.1	Introduction	9
2.2	Application of MOSFET	12
2.3	Down Scaling Issues	13
2.4	Short Channel Effect	15
2.5	Silicon-on-Insulator MOSFET	16
2.6	High-k Materials	18
2.7	Previous Research or Findings	20
CHA	PTER 3 METHODOLOGY	23
3.1	Research Methodology Flow Chart	23
3.2	Simulation using TCAD	25
3.3	Flow Chart of basic 19nm Bulk-Si nMOSFET Fabrication Process	26
3.4	Fabrication of NMOS device with 19nm Gate Length using ATHENA mo	dule 27
	3.4.1 Mesh Initialization	28
	3.4.2 P-type Silicon Substrate	29
	3.4.3 Well Oxidation	29

v

3.4.4 BOX Formation	30
3.4.5 P-Well Implantation	31
3.4.6 Mask Nitride Deposition	31
3.4.7 Photoresist Layer Etching	32
3.4.8 Setup of a Silicon Trench Machine	33
3.4.9 Trench Sidewall Passivation	33
3.4.10 Chemical Mechanical Polishing (CMP)	34
3.4.11 Sacrificial Oxidation	35
3.4.12 Gate Oxide Growth	35
3.4.13 Threshold Voltage Adjustment Implantation	36
3.4.14 Polysilicon Gate Deposition	37
3.4.15 Halo Implantation	38
3.4.16 Gate Spacer Growth	39
3.4.17 Source/Drain Implantation	40
3.4.18 Silicide Growth	41
3.4.19 PECVD & BPSG Oxide Deposition	42
3.4.20 Pattern Source/Drain Contact & Compress Implantation	43
3.4.21 Aluminium Metallization	43
3.4.22 Aluminium Etching	44
3.4.23 Mirror SOI MOSFET Structure	45

3.5	Perfor ATLA	rmance A	Analysis of SOI MOSFET with 19nm Gate Length using le	45
CHA	PTER	4 RESU	LTS AND DISCUSSION	46
4.1	19nm	Bulk-Si	MOSFET with Si ₃ N ₄ as the gate spacer	46
4.2	19nm	SOI MC	OSFET with Si ₃ N ₄ as the gate spacer	49
	4.2.1	19nm S	OI MOSFET with BOX Layer Thickness of 20nm	49
	4.2.2	19nm S	OI MOSFET with BOX Layer Thickness of 30nm	52
4.3	19nm	SOI MC	SFET with Different Gate Spacer Materials	54
	4.3.1	19nm S	OI MOSFET with BOX Layer Thickness of 20nm	55
		4.3.1.1	19nm SOI MOSFET with Aluminium Oxide (Al ₂ O ₃) as the gate spacer	55
		4.3.1.2	19nm SOI MOSFET with Zirconium Oxide (ZrO ₂) as the gas spacer	te 57
		4.3.1.3	19nm SOI MOSFET with hafnium oxide (ZrO_2) as the gate spacer	59
		4.3.1.4	19nm SOI MOSFET with titanium oxide (TiO ₂) as the gate spacer	60
	4.3.2	19nm S	OI MOSFET with BOX layer thickness of 30nm	63
		4.3.2.1	19nm SOI MOSFET with aluminum oxide (Al_2O_3) as the gas spacer	ite 63
		4.3.2.2	19nm SOI MOSFET with zirconium oxide (ZrO ₂) as the gat spacer	e 64

C Universiti Teknikal Malaysia Melaka

	4.3.2.3	19nm SOI MOSFET with hafnium oxide (HfO ₂) as the gate	
		spacer	66
	4.3.2.4	19nm SOI MOSFET with titanium oxide (TiO ₂) as the gate spacer	68
4.4	Analysis of 19	nm SOI MOSFET with Different Gate Spacer Materials	71
СНА	PTER 5 CONC	CLUSION AND FUTURE WORKS	76
5.1	Conclusion		76
5.2	Recommendat	ion and Future Development	77
REF	ERENCES		79

LIST OF FIGURES

Figure 1.1: The prediction in technology node follows Moore's Law	3
Figure 2.1: Basic block diagram of a MOSFET	10
Figure 2.2: Structure of n-type MOSFET	10
Figure 2.3: Structure of p-type MOSFET	11
Figure 2.4: I-V characteristic graph of nMOSFET	12
Figure 2.5: Illustration of scaling in MOSFET	13
Figure 2.6: Leakage current mechanism in nanoscale MOSFET	16
Figure 2.7: PD-SOI MOSFET structure	18
Figure 2.8: FD-SOI MOSFET structure	18
Figure 3.1: Research methodology flow chart	24
Figure 3.2: Simulation flowchart using Silvaco TCAD	26
Figure 3.3: Process flow for fabrication of 19nm Bulk-Si MOSFET	27
Figure 3.4: Process flow for fabrication of SOI MOSFET	28
Figure 3.5: P-type substrate doping concentration	29
Figure 3.6: Structure of SOI MOSFET after oxide oxidation	30
Figure 3.7: BOX formation in the structure	30

Figure 3.8: P-well implantation in the SOI MOSFET structure	31
Figure 3.9: Structure after nitride layer and photoresist are deposited	32
Figure 3.10: Structure of SOI MOSFET after photoresist etching	32
Figure 3.11: Structure after nitride etching and photoresist removal	33
Figure 3.12: New oxide layer is grown on the SOI MOSFET structure	34
Figure 3.13: SOI MOSFET structure after CMP process	34
Figure 3.14: Sacrificial oxide layer is grown on the SOI MOSFET structure	35
Figure 3.15: SOI MOSFET structure after growth of the gate oxide	36
Figure 3.16: Threshold voltage adjustment implantation in the SOI MOSFET	37
Figure 3.17: Polysilicon gate is deposited on the surface of SOI MOSFET	38
Figure 3.18: Before Halo implantation is done in the structure	38
Figure 3.19: After Halo implantation is done in the structure	39
Figure 3.20: Conventional gate spacer (Si_3N_4) is grown in the SOI MOSFET	40
Figure 3.21: SOI MOSFET structure after Source/Drain Implantation	41
Figure 3.22: Silicide is grown on top of Polysilicon gate	42
Figure 3.23: MOSFET structure after BPSG process	43
Figure 3.24: Structure after compress implant is being performed	43
Figure 3.25: Aluminium is metallization in the SOI MOSFET structure	44
Figure 3.26: Aluminium is etched in the structure	44
Figure 3.27: Complete structure of 19nm SOI MOSFET after mirroring process	45
Figure 4.1: Structure of 19nm Bulk Si MOSFET with Si_3N_4 as gate spacer	47
Figure 4.2: I_D versus V_G graph for 19nm Bulk-Si MOSFET	48
Figure 4.3: Result obtained from ATLAS window for 19nm Bulk-Si MOSFET	49

Figure 4.4: Structure of 19nm SOI MOSFET and Si_3N_4 as the gate spacer 50	
Figure 4.5: ID versus VG graph for 19nm SOI MOSFET and Si_3N_4 as the gate spacer 51	
Figure 4.6: Result obtained from ATLAS for 19nm SOI MOSFET and Si_3N_4 as the gate spacer 51	
Figure 4.7: Structure of 19nm SOI MOSFET and Si_3N_4 as the gate spacer 52	
Figure 4.8: I_D versus V_G graph for 19nm SOI MOSFET and Si_3N_4 as the gate spacer 53	
Figure 4.9: Result obtained from ATLAS for 19nm SOI MOSFET and Si_3N_4 as the gate spacer 54	
Figure 4.10: Structure of 19nm SOI MOSFET and Al ₂ O ₃ as the gate spacer 55	
Figure 4.11: I_D versus V_G graph for 19nm SOI MOSFET and Al_2O_3 as the gate spacer 56	
Figure 4.12: Result obtained from ATLAS for 19nm SOI MOSFET and Al ₂ O ₃ as the gate spacer 56	
Figure 4.13: Structure of 19nm SOI MOSFET and ZrO ₂ as the gate spacer 57	
Figure 4.14: I_D versus V_G graph for 19nm SOI MOSFET and ZrO_2 as the gate spacer 58	
Figure 4.15: Result obtained from ATLAS for 19nm SOI MOSFET and ZrO ₂ as the gate spacer 58	
Figure 4.16: Structure of 19nm SOI MOSFET and HfO ₂ as the gate spacer 59	
Figure 4.17: I_D versus V_G graph for 19nm SOI MOSFET and HfO ₂ as the gate spacer 60	
Figure 4.18: Result obtained from ATLAS for 19nm SOI MOSFET and HfO ₂ as the gate spacer 60	
Figure 4.19: Structure of 19nm SOI MOSFET and TiO ₂ as the gate spacer 61	
Figure 4.20: I_D versus V_G graph for 19nm SOI MOSFET and TiO ₂ as the gate spacer 62	

xi

Figure 4.21: Result obtained from ATLAS for 19nm SOI MOSFET and TiO ₂ as the gate spacer 62
Figure 4.22: Structure of 19nm SOI MOSFET and Al2O3 as the gate spacer63
Figure 4.23: I_D versus V_G graph for 19nm SOI MOSFET and Al_2O_3 as the gate spacer 64
Figure 4.24: Result obtained from ATLAS for 19nm SOI MOSFET and Al ₂ O ₃ as the gate spacer 64
Figure 4.25: Structure of 19nm SOI MOSFET and ZrO ₂ as the gate spacer 65
Figure 4.26: I_D versus V_G graph for 19nm SOI MOSFET and ZrO_2 as the gate spacer 66
Figure 4.27: Result obtained from ATLAS for 19nm SOI MOSFET and ZrO ₂ as the gate spacer 66
Figure 4.28: Structure of 19nm SOI MOSFET and HfO ₂ as the gate spacer 67
Figure 4.29: I_D versus V_G graph for 19nm SOI MOSFET and HfO ₂ as the gate spacer 68
Figure 4.30: Result obtained from ATLAS for 19nm SOI MOSFET and HfO ₂ as the gate spacer 68
Figure 4.31: Structure of 19nm SOI MOSFET and TiO ₂ as the gate spacer 69
Figure 4.32: I_D versus V_G graph for 19nm SOI MOSFET and TiO ₂ as the gate spacer 70

Figure 4.33: Result obtained from ATLAS 19nm SOI MOSFET and TiO_2 as the gate spacer 70

LIST OF TABLES

Table 2.1: Collection of literature review related to the project					
Table 4.1: Comparison table for 19nm SOI MOSFET 19nm SOI MOSFET BOX layer thickness of 20nm	with 71				
Table 4.2: Comparison table for 19nm SOI MOSFET 19nm SOI MOSFETBOX layer thickness of 30nm	with 71				

LIST OF SYMBOLS AND ABBREVIATIONS

Al_2O_3	:	Aluminium oxide	
BOX	:	Buried oxide	
BPSG	:	Boron Phosphor Silicate Glass	
CMOS	:	Complementary Metal Oxide Semiconductor	
CVD	:	Chemical Vapor Deposition	
D	:	Drain	
HfO ₂	:	Hafnium oxide	
IC	:	Integrated circuit	
ID	:	Drain current	
Ion	:	Drive current	
Ioff	:	Leakage current	
ITRS	:	International Technology Roadmap of Semiconductor	
k	:	Dielectric constant	
L _G	:	Gate length	
MOSFET	:	Metal Oxide Semiconductor Field Effect Transistor	
PECVD	:	Plasma Enhanced Chemical vapor deposition	

S	:	Source
Si ₃ N ₄	:	Silicate nitride
SiO ₂	:	Silicon dioxide
SOI	:	Silicon-on-Insulator
SS	:	Subtreshold swing
STI	:	Shallow trench isolation
TiO ₂	:	Titanium oxide
V _{DS}	:	Drain-to-source voltage
V _G	:	Gate voltage
V _{GS}	:	Gate-to-source Voltage
V_{th}	:	Threshold voltage
ZrO ₂	:	Zirconium oxide

CHAPTER 1

INTRODUCTION

This chapter presents the brief introductory of project background which contains objectives, problem statement, scope and the significances of this project.

1.1 Background

As technology keeps evolving, people become more dependent on electronic and digitalized devices. It is not that long ago when the embedded system and computer system in Industrial Revolution 3.0 are broadly used. Now, in the era of Industrial Revolution 4.0 and Internet-of-Things (IoT), the needs of fast and improved communications, electronic devices and systems continue to increase. Manufacturing industries demand the high speed machines, systems, managements and production while people wish to have the best electronic services and products. Thus, with the

increasing requests, evolution of transistor plays a dominant role in getting everything to the desired point [1].

Metal Oxide Semiconductor Field Effect Transistor (MOSFET) which is a type of transistor is one of the vital elements in the integrated circuit (IC). It could amplify electronic signals and act like a switch whenever it is in the conduction mode. Meanwhile, an IC or also known as a chip or microchip is an electronic device or microprocessor which thousands or millions of its functional blocks such as transistors, capacitors and resistors are all fabricated on a same piece of silicon wafer [2]. Such its functions, ICs are widely used in modern electronic devices, for instance, computers, smartphones, digital watches, calculators, robots and machines. The MOSFET is the most preferable type of transistors to be used in ICs due to its special characteristics. The MOSFET is small in size and space-saving which makes it easily fabricated on the IC, higher commutation speed, reliable to be used in digital circuits as well as consumes low power to operate thus dissipates less power loss to the surroundings.

Along with the passing years, industry has scaled down the dimension of MOSFET based on Moore's Law. As shown in Figure 1.1, the technology node becomes smaller; from microscale to nanoscale as entering the 21st century. Thus, semiconductor companies are competing to abide this prediction by reducing the gate dimension and the length of effective channel. Miniaturizing the dimension of MOSFET allows numbers of transistor to be integrated on a chip. As proofs, in year 2014, the best Intel processor available contains 1.7 billion transistors while in year 2016, Intel's has well-E CPUs contained 2.6 billion transistors and the high-end Xeon server chips are reported to have more than two billion transistors [3].

Figure 1.1: The prediction in technology node follows Moore's Law [4]

Besides, transistor scaling technology gives benefits in reducing the cost per production per single IC, increase the speed and performance, better stability of the operation and less power dissipation of the device. Raspberry Pi boards recently cost only for \$5 (around RM 20.40 in Malaysia) and people got a recipe for robotics everywhere to develop small inventions through Internet of Things (IoT). Furthermore, scaling down both in price and size has led to some excellent home applications. People now can invent robot vacuum cleaners to perform human tasks at home while smartphones helps as virtual assistants and as a hub for other simpler robotic appliances.

Unfortunately, there are several challenges arise as the device becomes smaller such as performance degradation and short channel effects (SCEs) which make it difficult to continue reducing the device's size follows the conventional law [5]. When down scaling MOSFET, it is hard to maintain a nominal threshold voltage (V_{th}) as well as reduce the leakage current (I_{off}) and subthreshold swing (SS) to