CONSIDERATION OF HAND GRIP STRENGTH IN THE HAND GRINDER HANDLE TO IMPROVE SUBJECTIVE COMFORT AND WORK PRODUCTIVITY

CHIN EE LING B051410110

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2018

🔘 Universiti Teknikal Malaysia Melaka

CONSIDERATION OF HAND GRIP STRENGTH IN THE HAND GRINDER HANDLE TO IMPROVE SUBJECTIVE COMFORT AND WORK PRODUCTIVITY

Submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Management)(Hons.)

by

CHIN EE LING B051410110 940309-04-5128

FACULTY OF MANUFACTURING ENGINEERING

2018

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk:CONSIDERATION OF HAND GRIP STRENGTH IN THE HAND
GRINDER HANDLE TO IMPROVE SUBJECTIVE COMFORT AND
WORK PRODUCTIVITY

Sesi Pengajian: 2017/2018 Semester 2

Saya CHIN EE LING (940309-04-5128)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULI (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

Disahkan oleh:

Alamat Tetap:

Cop Rasmi:

Tarikh: _____

Tarikh: _____

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Consideration of Hand Grip Strength in the Hand Grinder Handle to Improve Subjective Comfort and Work Productivity" is the result of my own research except as cited in references.

Signature:Author"s Name: CHIN EE LINGDate: 6 June 2018

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Manufacturing Management) (Hons). The member of the supervisory committee is as follow:

.....

(Dr. Isa Bin Halim)

ABSTRAK

Pada era globalisasi ini, inovasi peralatan tangan amatlah penting kerana permintaan produk industri pembuatan semakin meningkat. Peralatan tangan perlu direka dengan menerapkan asas ergonomik untuk memastikan pengguna dapat menggunakan peralatan tersebut dengan usaha yang minimum, tetapi boleh menghasilkan keluaran yang maksimum. Dalam industri pembuatan, pencanai tangan merupakan peralatan yang digunakan untuk melaksanakan operasi pemesinan am. Walau bagaimanapun, ramai pengguna menghadapi masalah berkaitan dengan rekabentuk mesin pencanai sedia ada seperti tidak dapat mengenggamnya dengan kemas, saiznya yang besar dan berat, rekabentuk pemegang yang tidak ergonomik, dan terdedah kepada postur pergelangan tangan yang tidak neutral semasa menggunakannya. Hal ini akan mempengaruhi tahap keselesaan dan produktiviti pengguna. Oleh itu, objektif kajian ini adalah untuk mereka bentuk dan membangunkan satu prototaip pemegang pencanai tangan yang dapat meningkatkan keselesaan dan produktiviti pengguna semasa proses mencanai. Untuk mencapai objektif ini, keperluan pengguna telah diutamakan dan diubah suai kepada parameter melalui House of Quality (HoQ). Sementara itu, kaedah saringan telah digunakan untuk memilih konsep pemegang pencanai tangan yang terbaik dan telah dilakar dengan menggunakan perisian SOLIDWORKS. Pemegang pengisar tangan yang selesa telah dihasilkan dengan menggunakan paip PVC. Rekabentuk pemegang pencanai tangan sedia ada dan rekabentuk pemegang pencanai tangan yang dihasilkan melalui kajian ini telah dibandingkan untuk menilai keberkesanannya. Analisa kos telah dilakukan menggunakan kaedah anggaran Return on Investment (ROI). Keputusan kajian ini menggambarkan prototaip pemegang pencanai tangan telah dicipta berjaya meningkatkan tahap keselesaan dan produktiviti pengguna.

ABSTRACT

In the world of globalization, the innovation of hand tools is important due to the increasing of demand in competitive manufacturing environment. Hand tools should be designed ergonomically to ensure users could use the tools with minimum effort to perform maximum operation. In manufacturing industry, a hand grinder is the common tool that used in various fabrication tasks. However, many users faced difficulties such as unable to grip the hand grinder firmly, larger size or weight of hand grinder, inappropriate design of support handle and faced awkward posture in the wrist when overexposure to the existing design of hand grinder handle. It would influence the subjective comfort and work productivity of the user. Therefore, the aim of study is to design and fabricate a high fidelity prototype of hand grinder handle for the improvement of subjective comfort and work productivity during grinding process. In order to achieve the objective, users requirements were translated and modified to technical parameters through House of Quality (HoQ). Meanwhile, concept screening method was applied to select the best concept of hand grinder handle and then sketched with SOLIDWORKS software. A high fidelity prototype of hand grinder handle was fabricated by using the PVC pipe. The existing grinder handle design and proposed handle design developed by this study were compared to evaluate the effectiveness. In order to meet the entrepreneurial requirement, the profitability of the proposed hand grinder was evaluated using Return on Investment (ROI). The result of this study illustrated that a high fidelity prototype of hand grinder handle was able to improve comfort level and work productivity of users.

DEDICATION

Only

my beloved father, Chin Kang Ming

my appreciated mother, Tik Yam Nyap @ Tan Yam Nyap

my adored brother and sister, Chin Yan Ann and Chin Ee Xuan

for giving me moral support, cooperation, encouragement and also understandings

Thank You So Much & Love You All Forever

ACKHOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Isa bin Halim. He always provides guidance, advices and critics to me during this project until the project is complete successfully. When I faced difficulties in my project, he had dedicated to provide me useful information and comments for solving the obstacles.

Besides that, I am also grateful and thanks to Dr. Nadiah binti Ahmad and Mr. Nor Akramin bin Mohamad in providing the comments in my project and guiding me to improve my project.

Furthermore, I would like to thank all assistant engineers whose involve in this project. They always give me the supportive information and provide me facilities in completing this study.

Thank and deeply indebted to all my friends whose involve in this project directly and indirectly. They always provide me idea when I am lost.

Lastly, I would like to express my appreciation to my parent who were always gave me moral and financial support in completing this project. They always motivated and advised me to be never giving up easily, thus I manage to complete this project on time.

TABLE OF CONTENTS

Abstra	k		i
Abstra	ct		ii
Dedica	tion		iii
Ackno	wledgeme	ent	iv
Table of	of Conten	ts	V
List of	Tables		ix
List of	Figures		х
List of	Abbrevia	ations	xii
List of	Symbols		xiv
СНАР	TER 1 II	NTRODUCTION	1
1.1	Backgr	round of Study	1
1.2	Probler	m Statements	5
1.3	Objecti	ives	7
1.4	Scope of	of Study	8
1.5	Signific	cance of Study	9
СНАР	TER 2 L	ITERATURE REVIEW	11
2.1	An Ove	erview of Hand Grip Strength	11
2.	1.1 Fa	ctors affecting hand grip strength	12
	2.1.1.1	Posture	12
	2.1.1.2	Time	13
	2.1.1.3	Hand circumference	13
	2.1.1.4	Gender and handedness	13
	2.1.1.5	Age	14
	2.1.1.6	Smoking	14
	2.1.1.7	Alcohol consumption	15

2.1.	1.8	Grip force	15
2.1.	1.9	Handle orientation	16
2.1.	1.10	Vibration	16
2.1.2	Тур	be of hand grip	16
2.1.3	Har	nd grip measurement tools	19
2.1.4	Har	nd grip measurement procedures	20
2.1.5	The	importance of hand grip data	23
2.2 A	nalysis	s of Subjective Measurement and Objective Measurement	23
2.2.1	Sub	jective measurement	24
2.2.	1.1	Comfort Questionnaire for Hand Tools (CQH)	25
2.2.	1.2	Rate of Perceived Exertion (RPE)	25
2.2.2	Obj	ective measurement	26
2.2.	2.1	Hand grip strength measurement	27
2.2.	2.2	Electromyography (EMG)	27
2.3 Re	edesig	n and Fabricate Prototype of Hand Grinder Handle	28
2.3.1	Har	nd anthropometry	28
2.3.2	Ηοι	use of Quality (HoQ)	29
2.3.3	Cor	ncept screening method	30
2.3.4	Use	er experience	31
2.3.5	Foc	us group	31
2.3.6	Des	sign Software	32
2.3.7	Ret	urn on Investment (ROI)	32
2.4 D	ifferen	ces between Previous Studies and Current Study	33
2.5 Su	ummar	у	35
	0 2 N/I		26
		ETHODOLOGY	36
		nent of the Maximum Hand Grip Strength when Wrist	
Sup	ination	n and Pronation Positions	36
3.1.1	Cal	ibrate of hand dynamometer	37
3.1.2	Obt	ain approval from Research Ethics Committee (RECs) and	l participant
	scre	eening form	38

3.1.3	Perform pilot study	38
3.1.4	Execute actual data collection	39
3.1.5	Develop a database of maximum hand grip strength	40
3.1.6	Perform statistical analysis by using Microsoft Excel	41
3.2 An	alysis of Hand Grip Strength, Muscle Activity, Subjective Comfort and W	⁷ ork
Pro	oductivity when Using the Existing Design of Hand Grinder Handle	42
3.2.1	Develop questionnaire survey form and standard operating procedure v	with
	consent form	43
3.2.2	Experimented tasks	43
3.2.3	Execute hand grip strength performance	44
3.2.4	Perform Electromyography (EMG) analysis	45
3.2.5	Distribute questionnaire survey	45
3.2.6	Estimate work productivity by using time study	46
3.3 E	Design and Fabricate a High Fidelity Prototype of Hand Grinder Handle	46
3.3.1	Measurement of hand anthropometry	46
3.3.2	Perform interview	48
3.3.3	Apply House of Quality (HoQ)	48
3.3.4	Apply concept screening method (Pugh method)	49
3.3.5	Handle design by using SOLIDWORKS software	50
3.3.6	Fabricate the prototype of handle	51
3.3.7	Effectiveness of the proposed handle design versus existing handle design	53
3.3.8	Perform the Return on Investment (ROI)	53
3.4 S	ummary	54
СНАРТЕ	R 4 RESULT AND DISCUSSION	58
4.1 Me	easurement of the Maximum Hand Grip Strength when Wrists at Verti	ical,
Su	pination and Pronation Positions	58
4.1.1	Demographic of participants	59
4.1.2	Hand grip strength data	61
4.2 An	alysis of Hand Grip Strength, Muscle Activity, Subjective Comfort and W	⁷ ork
Pro	oductivity when Using the Existing Design of Hand Grinder Handle	63

4	.2.1	Hand grip strength performance	64
4	.2.2	Muscle activity assessment	65
4	.2.3	Subjective comfort	67
4	1.2.4	Work productivity	69
4.3	Des	ign and Fabricate a High Fidelity Prototype of Hand Grinder Handle	70
4	.3.1	Interview	71
4	.3.2	House of Quality (HoQ)	73
4	.3.3	Concept screening (Pugh method)	76
4	1.3.4	Effectiveness of the proposed handle design versus existing handle design	78
4	.3.5	Payback period analysis	84
CILL			0.6
СНА	PTER	5 CONCLUSION AND RECOMMENDATIONS	86
5.1	Ass	essment of Maximum Hand Grip Strength Measurement	86
5.2	Asses	sment of Hand Grip Strength, Muscle Activity, Subjective Comfort and We	ork
	Produ	ctivity when Using the Existing Design of Hand Grinder Handle	87
5.3	Des	ign and Fabricate High Fidelity Prototype of Hand Grinder Handle	87
5.4	Rec	ommendations for Future Study	88
5.5	Sust	tainable Design Development	88
REFI	ERENC	CES	89
APPF	ENDIC	ES	
А			04
В			07
С	Stand	ard Operating Procedures with Consent Form 1	10
D	Interv	view Form 1	12
Е	Datab	base of Maximum Hand Grip Strength 1	15
F			19
G	Gantt	Chart of FYP I 1	21
Н	Gantt	Chart of FYP II 1	22

LIST OF TABLES

Rating of Perceived Exertion	26
Differences between previous studies and current study	33
Hand anthropometry of male and female Iban population	47
The weightage of interrelationships matrix symbols	49
Concept screening matrix	50
Types of rating symbols used in concept screening matrix	50
Age groups	59
Ethnic groups	60
Descriptive statistics of weight, height and BMI	60
Descriptive statistics of maximum hand grip strength for different wrist	
position (kg)	62
Descriptive statistics of muscle activity (μV)	66
Comfort level of the hand grinder handle	69
Affinity diagram obtained from the interview session	71
Importance rating of customer requirements	74
Absolute importance of technical requirements	74
Concept screening matrix	77
Comfort level of the proposed handle	83
Return on investment after ergonomics invention of hand grinder handle	85
Occupational health saving cost	85
	Differences between previous studies and current studyHand anthropometry of male and female Iban populationThe weightage of interrelationships matrix symbolsConcept screening matrixTypes of rating symbols used in concept screening matrixAge groupsEthnic groupsDescriptive statistics of weight, height and BMIDescriptive statistics of maximum hand grip strength for different wristposition (kg)Descriptive statistics of muscle activity (μV)Comfort level of the hand grinder handleAffinity diagram obtained from the interview sessionImportance rating of customer requirementsAbsolute importance of technical requirementsConcept screening matrixComfort level of the proposed handleReturn on investment after ergonomics invention of hand grinder handle

LIST OF FIGURES

1.1	Main components of hand grinder	2
1.2	Hand with CTS when holding a handle	4
1.3	Hand grinder unable to grip firmly by female's hand	5
1.4	Comparison of size among hand grinder and other hand tools	6
1.5	Grinding a slot in a wall	6
1.6	Flexion writs posture when using hand grinder.	7
2.1	A crush grip posture	17
2.2	A pinch grip posture	17
2.3	A support grip posture	18
2.4	A power grip posture	18
2.5	A precision grip posture	19
2.6	Jamar hydraulic hand dynamometer	20
2.7	Procedures of grip strength measurement according to ASHT	21
2.8	Procedures of grip strength measurement according to SHAP	22
2.9	House of Quality	29
2.10	Concept screening matrix	30
2.11	The formula of single payback period	33
3.1	Calibration of hand dynamometer with 10kg load and 15kg load.	37
3.2	Hand dynamometer after calibration	37
3.3	Comparison of three hand dynamometer	38
3.4	A light trial of hand grip strength measurement	39
3.5	Hand grip strength measurement	40
3.6	Descriptive statistics of hand grip strength	41
3.7	Regression analysis of hand grip strength	42
3.8	Schematic diagram of mild steel work pieces	44
3.9	Brachioradialis muscle situated in the forearm	45

3.10	Schematic diagram of hand palm	47
3.11	Interview with a user – assistant engineer of FKP, UTeM	48
3.12	Flow chart of the fabrication the prototype handle	52
3.13	Formula of payback period	53
3.14	Flow chart of method used	57
		(1
4.1	Distribution of dominant hand of participants	61
4.2	Normal probability plot of vertical position	62
4.3	Normal probability plot of supination position	63
4.4	Normal probability plot of pronation position	63
4.5	Average maximum hand grip strength for different wrist position.	64
4.6	Box plot analysis of muscle activity	66
4.7	Work productivity of grinding process	70
4.8	House of Quality	75
4.9	Concept A	76
4.10	Concept B	76
4.11	Concept C	77
4.12	Proposed hand grinder handle	78
4.13	Average maximum hand grip strength between proposed handle and existing	
	handle	79
4.14	Muscle activity for male respondents between proposed handle and existing	
	handle	81
4.15	Muscle activity for female respondents between proposed handle and existing	
	handle	81
4.16	Work productivity of grinding process between proposed handle and existing	
	handle	84

LIST OF ABBREVIATIONS

a.m.	-	ante meridiem
ANOVA	-	Analysis of Variance
ASHT	-	American Society of Hand Therapists
BMI	-	Body Mass Index
CQH	-	Comfort Questionnaire for hand tools
CTS	-	Carpal Tunnel Syndrome
EMG	-	Electromyography
FKP	-	Faculty of Manufacturing Engineering
FSR	-	Force Sensing Resistors
HAVS	-	Hand-Arm Vibration Syndrome
HoQ	-	House of Quality
LPD	-	Local Perceived Discomfort
NIOSH	-	National Institute of Occupational Safety and Health
OSHA	-	Occupational Safety and Health Administration
p.m.	-	post meridiem
PVC		Polyvinyl chloride
QFD	-	Quality Function Deployment
RECs	-	Research Ethnics Committee
ROI	-	Return on Investment

RPE	-	Rate of Perceived Exertion
RS	-	Raynaud"s syndrome
SD	-	Standard deviation
SHAP	-	Southampton Hand Assessment Procedure
SOCSO	-	Social Security Organization
SV	-	Standard variance
UTeM	-	Universiti Teknikal Malaysia Melaka
WHO		World Health Organization

LIST OF SYMBOLS

cm	-	centimetre
kg	-	Kilogram
mm	-	millimetre
mV	-	micro-Volt
%	-	percent

CHAPTER 1 INTRODUCTION

This chapter presents the background of study, problem statements, objectives, scope, and significant of the study. The background of study is concentrated on the design of hand grinder handle and the work-related injuries due to hand grinder. The problem statements demonstrate the problems that faced from the users in current situation. In the objectives, the target of this study is to design and fabricate a high fidelity prototype of hand grinder handle whereas the scope of study highlights the focus and limitations of the study. At the end of this chapter, significant of study highlights the importance of the study.

1.1 Background of Study

In the world of globalization, the innovation of hand tools is important due to the increasing of demand in competitive manufacturing environment. Hand tools are instruments that have ergonomically designed with unique structure, characteristic and function to ease human work. It is useful in the surface finishing of products such as removing the rough surface or changing the product shape. Due to the simple operation of hand tools, many users can perform their task easily although they have a limited knowledge on that particular hand tool. Hand tools are actually designed ergonomically from time to time to improve the

performance and efficiency of the tool. This is to ensure human could use the tools with minimum effort to perform maximum operation. There are various types of hand tools in the industry, such as hand grinders, hammers, cutters, clamps, saws and hand drills. In manufacturing industry, hand grinder is one of the common tools used in simple tasks.

Hand grinder is a handheld tool that used in the grinding, polishing and cutting processes. It can be either powered by electric motor, petrol engine and compressed air, or used by the battery supplied. During operation, the motor drives at a high speed to turn on the geared head at the right angle. The geared head is fixed with an abrasive disc which can be replaced by a new disc when it is worn after extensive grinding operation. Figure 1.1 shows a hand grinder that normally use for Faculty of Manufacturing Engineering (FKP) in Universiti Teknikal Malaysia Melaka (UTeM). Basically, a hand grinder has 4 main components such as support handle, long arm handle, spindle lock and motor. The hand grinder is designed with a side handle to provide support. Users with right hand or left hand dominant also can use the hand grinder smoothly due to the design of both sides support handle. Although the hand grinder is a multi-purpose tool, it had been reported with various imperfections in recent year.

Figure 1.1: Main components of hand grinder

According to Social Security Organization (SOCSO) of Malaysia, there are 39 cases of accidents associated with electrical hand tools in 2014. Besides, during 1988 to 1992, Swedish

Labour Market Insurances reported that 2830 victims of occupational use of vibrating handhold tools suffered from permanent medical disabilities (Greenslade & Larsson, 1997). The researchers also declared that the number of permanent debilitate injures in one year caused by these tools is more than half compared to other injuries. Recently, the Occupational Safety and Health Administration of United States Department (OSHA 2017) reported one worker burned in the hand and head when using a hand grinder. This is due to ignition of magnesium chips that produced by the hand grinder.

Apart from the various imperfections of hand grinder, subjective comfort and work productivity will also affected when overexposure to hand grinder. When user exposures to the hand grinder at a long time, their hands will start with a vibration effect and they will feel uncomfortable. At this time, the rough motion will disturb the effectiveness of the user. There was a user make a lamentation about reduction of motion freedom during grinding process (McDowell *et al.*, 2016). This is due to the poor position for the support handle of hand grinder. Therefore, this user was unable to perform well in the grinding process and lead to the reduction of work productivity.

Moreover, many workers who overexposure to hand grinder would easily experience the work-related injuries. The work-related injuries such as Carpal Tunnel Syndrome (CTS) and Raynaud"s syndrome (RS) may cause by various factors. These factors could be contributed by human lifestyle, working procedural, working environmental, physiological and socio-economic (Pelmear *et al.*, 1992). Handle design becomes one of the elements that contributed to injuries of CTS. In a previous study, it stated that handle change are being brought due to the sanitation and the increase of motion-related disease such as CTS (Cochran *et al.*, 1985). Figure 1.2 shows a hand that contributed to CTS when holding a handle

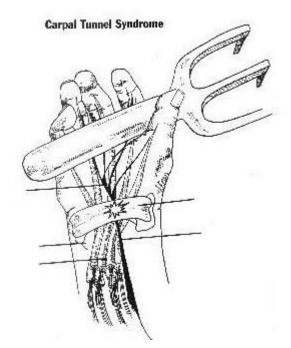


Figure 1.2: Hand with CTS when holding a handle (Master Garden Products, 2014)

Based on the overall considerations, redesign of hand grinder handle is compulsory to achieve future improvement of this hand tool. Many researchers and studies were performed to reduce the exposure of vibration in hand grinding process. However, the effects of handle design parameters such as handle size and shape on Malaysia users remain unexplored. Additionally, the existing hand grinder was designed and manufactured by foreign countries such as Japan and Germany; hence, the anthropometric data applied in the handle design were based on their populations.

To the best of author knowledge, a very few ergonomics studies been conducted to design the handle of hand grinder which considering Malaysian anthropometric data and strength. Therefore the aim of this study is to design and fabricate a handle of hand grinder to increase the comfort level and work productivity in grinding process.

1.2 Problem Statements

Muscle fatigue is a condition where an individual is short-term reduction in the capacity to do physical activity (Enoka & Duchateau, 2008). It may be caused by repetitive prolonged use of poor and incompatible design of the product especially the hand tools design. When using the current design of hand grinder handle, workers faced some difficulties such as unable to grip the hand grinder firmly, larger size or weight of hand grinder, inappropriate design of support handle and awkward posture in the wrist.

a) Unable to grip the hand grinder firmly

The existing design of hand grinder handle is not suitable to be used by female users due to their small palm hand. Most of the female users unable to grip the hand grinder firmly because the design of whole hand grinder is mainly focus to the male users. Figure 1.3 shows a female user unable to grip the hand grinder handle firmly. Eventually, this situation will jeopardize female users from injuries caused by sliding down of hand grinder. Therefore, the female users have high risk to face the accident when using the hand grinder.

Figure 1.3: Hand grinder unable to grip firmly by female's hand

b) Larger size or weight of hand grinder

Hand grinder is considered as a large and heavy hand tool compare to other hand tool. Due to both characteristics of hand grinder, it can slightly affect the users" performance.