IDENTIFICATION OF HAZARDOUS CONDITION OF WORKPLACE IN WOOD-BASED FURNITURE INDUSTRY: A CASE STUDY

LEE CHEANG FU B051410132

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2018

C Universiti Teknikal Malaysia Melaka

B051410132 BACHELOR OF MANUFACTURING ENGINEERING (HONS.) 2018 UTeM

IDENTIFICATION OF HAZARDOUS CONDITION OF WORKPLACE IN WOOD-BASED FURNITURE INDUSTRY: A CASE STUDY

This report is submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Hons.)

by

LEE CHEANG FU B051410132 940604-01-5087

FACULTY OF MANUFACTURING ENGINEERING 2018

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: **IDENTIFICATION OF HAZARDOUS CONDITION OF WORKPLACE IN WOOD-BASED FURNITURE INDUSTRY: A CASE STUDY**

Sesi Pengajian: 2017/2018 Semester 2

Saya LEE CHEANG FU (940604-01-5087)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan
Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

Disahkan oleh:

Alamat Tetap: <u>10, Jalan Makmur 7/3,</u> <u>Taman Bakri Makmur,</u> <u>84200, Muar,</u> <u>Johor.</u> Tarikh:

Cop Rasmi:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

C Universiti Teknikal Malaysia Melaka

FAKULTI KEJURUTERAAN PEMBUATAN

Tel: +606 - 331 6429 / Faks: +606 - 331 6431

Rujukan Kami (Our Ref) : UTeM. Rujukan Tuan (Your Ref) :

Ketua Pustakawan Perpustakaan UTeM Kampus Induk Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal Melaka. 6 June 2018

Tuan/Puan,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD LAPORAN PROJEK SARJANA MUDA KEJURUTERAAN PEMBUATAN.

NAMA: LEE CHEANG FU

Sukacita dimaklumkan bahawa Laporan PSM yang tersebut di atas bertajuk "*IDENTIFICATION OF HAZARDOUS CONDITION OF WORKPLACE IN WOOD-BASED FURNITURE INDUSTRY: A CASE STUDY*" mohon dikelaskan sebagai *SULIT / TERHAD untuk tempoh LIMA tahun dari tarikh surat ini.

2. Hal ini adalah kerana ianya merupakan projek yang ditaja sepenuhnya oleh syarikat luar dan hasil kajiannya adalah sulit.

Sekian dimaklumkan. Terima kasih.

Yang benar,

Tandatangan dan Cop Penyelia

NOTA: BORANG INI HANYA DIISI JIKA DIKLASIFIKASIKAN SEBAGAI SULIT DAN TERHAD. JIKA LAPORAN DIKELASKAN SEBAGAI TIDAK TERHAD, MAKA BORANG INI TIDAK PERLU DISERTAKAN DALAM LAPORAN PSM.

DECLARATION

I hereby, declared this report entitled "Identification of Hazardous Condition of Workplace In Wood-Based Furniture Industry: A Case Study" is the result of my own research except as cited in references.

Signature	:
Author's Name	: LEE CHEANG FU
Date	:

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for degree of Bachelor of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow:

(EN NIK MOHD FARID BIN CHE ZAINAL ABIDIN)

ABSTRAK

Laporan ini akan mengenalpasti keadaan berbahaya tempat kerja dan mencadangkan beberapa penyelesaian untuk menghapuskan bahaya. Bahaya merupaka isu yang amat berbahaya sekiranya tidak dapat menyelesaikan di tempat kerja. Oleh itu, industri perabot telah dipilih sebagai kajian penyelidikan kerana pekerja lebih mudah terdedah dengan faktorfaktor potensi penyakit pekerjaan yang pencemaran bunyi, habuk kayu, dan bahaya ergonomik dan sebagainya. Kajian ini memberi tumpuan kepada pendedahan bunyi, bahaya debu kayu, bahaya kimia dan bahaya ergonomik. Untuk pendedahan hingar di tempat kerja perabot, data berbanding dengan peraturan OSHA dan peraturan FMA. Sepuluh mesin dalam pengeluaran dipilih untuk mendapatkan data tahap bunyi dengan digital sound level detector model 407730. Maklum balas pekerja akan dilakukan untuk mengumpul data mengenai debu kayu dan bahaya kimia terutamanya di jabatan pemotong dan penyemburan jabatan. Untuk bahaya ergonomik, analisis RULA akan digunakan untuk menentukan postur kerja pekerja di tempat kerja yang berbeza iaitu tempat kerja pembungkusan, tempat kerja pemotong dan tempat kerja perhimpunan. Semua data yang diambil dalam proses pengumpulan data akan dianalisis dan dibincangkan. Dari hasil penyelidikan yang diperolehi, mencadangkan cadangan dan cadangan untuk membantu syarikat memperbaiki kawasan kerja bagi pekerja mereka dan untuk menghapuskan kemalangan dan risiko di kalangan pekerja.

ABSTRACT

The furniture manufacturing industry is an industry consisting of various types of workplaces, there are many hazards which put manufacturing workers' health and safety at risk. Workers can be exposed to a number of hazards in this industry that can result in serious injuries, occupational illness or even death. Therefore, furniture industry has been chosen as a research study because the workers were more easily exposed with the potential factors of occupational diseases which are noise pollution, wood dust, and ergonomic hazard and so on. This research focus on noise exposure, wood dust hazard, chemical hazard and ergonomic hazard. For the noise exposure in the furniture workplace compare with OSHA regulation and FMA regulation. Ten machines in the production selected in order to get the noise level data by using digital sound level detector model 407730. Feedback of the employee will be done to collect the data on wood dust and chemical hazard especially in cutting department and spraying department. For ergonomic hazard, RULA analysis will be apply in order to determine the working posture of the employee in different department which are packaging department, cutting department and assembly department. All the data taken in the data collection process will be analysed and discussed. From the research results obtained, propose recommendations and suggestions to help the company improve the working area for their workers and to eliminate the accidents and risk among workers.

DEDICATION

For my adored parents:

Lee Boon Chee Tee Lian Hia

And for my respected brother: Lee Cheang Yu Lee Cheang Chin

For giving me moral support, money and encouragement Thank you so much

iii

ACKNOWLEDGMENT

First of all, I would like to thank to my god for giving me opportunity to receive the tertiary education in Universiti Teknikal Malaysia Melaka (UTeM). Thanks to UTeM for providing a space to continue my studies and has participating in this research project as a pre-requisite subject for my course which is Bachelor of Manufacturing Engineering.

Next, I would like to express my gratitude to my respected supervisor, Mr Nik Mohd Farid Bin Che Zainal Abidin for the great mentoring that was given to me throughout the project. Thanks a lot for his guidance, motivation and support during the progression. He also has advised and counsels me the problem faced in my study. I also not forget to thank my panel, Prof Dr Chong Kuan Eng, PM Dr Zuhriah Binti Ebrahim, Dr Mohd Sharizan bin Othman to give special comment and suggestion to improve my study.

Meanwhile, not forget to sincere thank my industrial supervisor Ms Tham Poh Wan. She provided a lot of useful information and guidance to me and helped me to solve the problem. She had given many suggestion and comments throughout my study.

Besides, not forget to thank my parents and siblings in Muar. They always contact me to concern my study in Melaka. Thank for encouragement, motivation and love during my university life. Special thank for my parents always giving enough living expenses monthly and any help provided.

Last but not least, I would like to give a special thanks to my best friend and classmate, See Li Xin who gave me a lot of motivation and help me to solve the problem that I meet while doing my research such as giving me a lot of mentally support and advised. Thanks for the great friendships. Without all of you, my research cannot be completed successfully. May God will bless yours all for your healthy and best luck in the future.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	v
List of Tables	X
List of Figures	xi
List of Abbreviations	xiv
List of Symbols	XV

CHAPTER 1: INTRODUCTION

1.1 Research Background	1
1.2 Problem Statement	2
1.3 Objectives	5
1.4 Scopes	6
1.5 Significant of Research	6
1.6 Thesis Organization	7

CHAPTER 2: LITERATURE REVIEW

2.1 Occupational Safety and Health Administration	9
2.2 Hazard	11
2.2.1 Type of hazard	11
2.3 Hazard Identification, Risk Assessment and Risk Control	12
2.3.1 Definition	12
2.3.2 Identifying hazards and risks	15
2.3.3 Risk assessment	16
2.3.4 Risk control	17
2.3.4.1 Engineering controls	17
2.3.4.2 Management controls	17

2.3.4.3 Personal Protective Equipment	18
2.4 Factories and Machinery ACT with Regulations Related to the Hazard	
2.4.1 Noise exposure	20
2.4.1.1 Noise controlling materials	21
2.4.1.2 Noise level standard	22
2.4.1.3 Digital sound level detector model 407730	25
2.4.1.4 Time Weighted Average Noise Levels and Noise Dose	26
2.4.2 Wood dust hazard	27
2.4.3 Chemical hazard -Volatile Organic Compound	28
2.4.4 Ergonomic hazard	29
2.4.4.1 Rapid Upper Limb Assessment (RULA) Analysis	31
2.4.5 Safety and Health Organization at the workplace	32
2.5 Summary	33

CHAPTER 3: METHODOLOGY

3.1	Research Methodology	35
3.2	Data Collection	38
	3.2.1 Observation	38
	3.2.2 Measuring device	38
	3.2.3 Interview	38
	3.2.4 Questionnaire	39
	3.2.5 Flow chart of HIRARC Process	39
	3.2.6 Pictures and video recording	40
	3.2.7 Rapid Upper Limb Assessment (RULA) Analysis	40
	3.2.8 Summary of data collection	41
3.3	Data Analysis	41

CHAPTER 4 CASE STUDY IN COMPANY

4.1 Company Background	42
4.2 Process Flow of Company	44
4.3 Manufacturer Product	47
4.3.1 Processing table	47
4.3.2 Processing chair	48
4.4 Preliminary Study	49

CHAPTER 5: DATA COLLECTION AND ANALYSIS

5.1	Noise Level Analysis	50
	5.1.1 Cutting department area machine	51
	5.1.1.1 Tripper Overhead Drilling Machine	51
	5.1.1.2 Copy Shaper Machine	51
	5.1.1.3 16 Head Oscillating Drilling Machine	52
	5.1.1.4 Automatic Double End Mitre Saw Machine	53
	5.1.1.5 Automatic Circular Saw Machine	53
	5.1.2 Sanding department area machine	54
	5.1.2.1 Double Size Sander Machine	54
	5.1.2.2 Profile Sander Machine	55
	5.1.3 CNC department area machine	55
	5.1.3.1 CNC 025 Hopper 3 Axes Machine	55
	5.1.3.2 CNC Band Saw Machine	56
	5.1.3.3 CNC Double End Turnover Machine	56
5.2	Wood Dust Hazard Analysis	57
	5.2.1 Part A: Personal details	57
	5.2.2 Part B: Employee respondence	58
5.3	Chemical Hazard Analysis	64
	5.3.1 Part A: Personal details	64
	5.3.2 Part B: Employee respondence	65
5.4	Ergonomic Hazard Analysis	72
	5.4.1 Part A: Personal details	72
	5.4.2 Part B: Employee respondence	72
5.5	Ergonomic Hazard-Current Working Posture and Design Analysis	75
	5.5.1 Workstation 1- Working posture in packaging department	75
	5.5.2 Workstation 2- Working posture in cutting department	77
	5.5.3 Workstation 3- Working posture in assembly department	78

CHAPTER 6 RESULT AND DISCUSSION

6.1 Time Weighted Average Noise (TWA)	80
6.1.1 CNC 025 Hopper 3 Axes Machine	81
vii	

	6.1.2 Tripper Overhead Drilling Machine	81
	6.1.3 Copy Shaper Machine	82
	6.1.4 Double Size Sander Machine	82
	6.1.5 Profile Sander Machine	82
	6.1.6 CNC Double End Turnover Machine	83
	6.1.7 Automatic Double End Mitre Saw Machine	83
	6.1.8 Automatic Circular Saw Machine	83
	6.1.9 16 Head Oscillating Drilling Machine	84
	6.1.10 CNC Band Saw Machine	84
	6.1.11 Overall Result for TWA Noise Level	84
6.2	Noise Dose	85
	6.2.1 CNC 025 Hopper 3 Axes Machine	85
	6.2.2 Tripper Overhead Drilling Machine	85
	6.2.3 Copy Shaper Machine	86
	6.2.4 Double Size Sander Machine	86
	6.2.5 Profile Sander Machine	86
	6.2.6 CNC Double End Turnover Machine	87
	6.2.7 Automatic Double End Mitre Saw Machine	87
	6.2.8 Automatic Circular Saw Machine	87
	6.2.9 16 Head Oscillating Drilling Machine	88
	6.2.10 CNC Band Saw Machine	88
	6.2.11 Overall Result for Noise Dose	89
6.3	Proposed Solution	89
	6.3.1 Noise hazard -Hearing Protection Devices (HPDs)	89
	6.3.2 Wood dust hazard and chemical hazard – PPE	92
	6.3.3 Ergonomic hazard – Redesign workstation and training program	94
6.4	Redesign Workstation and Evaluation	96
	6.4.1 Workstation 1-Working posture in packaging department	96
	6.4.2 Workstation 2-Working posture in cutting department	98
	6.4.3 Workstation 3-Working posture in assembly department	100
6.5	Annual estimated cost of the equipment usage	102

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

103

viii

C Universiti Teknikal Malaysia Melaka

7.2 Recommendations for Future Study	
--------------------------------------	--

REFERENCES

APPENDICES

A Result of Noise Level Data	111
B Questionnaire for Wood Dust and Chemical Hazard	126
C Interview Form for Wood Dust and Chemical Hazard	132
D Survey Form for Ergonomic Hazard and Anthropometry Data	145
E HIRARC Form	148
F TWA Sound Level	150
G Sound Level Meter	151
H Gantt Chart for FYP I and FYP II	152

106

LIST OF TABLES

National occupational accident & fatality rate	4
Types of hazard	11
Likelihood of an occurrence	13
Severity of hazard	14
Risk matrix	14
Relative risk value	14
Factors affecting machinery noise emission	23
Allowable noise exposure limits for above 80 decibels	24
Specification of Model 407730	25
Overall data collection	41
Total average noise level for each machine	81
Overall result for Time Weighted Average noise level	84
Overall result for noise dose	89
Hearing Protection Devices	91
PPE for wood dust and chemical hazard	93
Annual estimated cost of the equipment usage	102
	Types of hazard Likelihood of an occurrence Severity of hazard Risk matrix Relative risk value Factors affecting machinery noise emission Allowable noise exposure limits for above 80 decibels Specification of Model 407730 Overall data collection Total average noise level for each machine Overall result for Time Weighted Average noise level Overall result for noise dose Hearing Protection Devices PPE for wood dust and chemical hazard

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

1.1	Occupational disease & poisoning by type of disease	3		
1.2	Occupational disease & poisoning by sector	3		
1.3	Occupational accidents by sector	4		
1.4	Occupational accident by state	5		
2.1	Limit for permissible noise exposure levels	22		
2.2	Recommended exposure limit by NIOSH			
2.3	Digital sound level detector model 407730			
2.4	Level of MSD risk	31		
2.5	Ergonomic risk score	32		
3.1	Flow chart of research	37		
3.2	Flow chart of HIRARC process	40		
4.1	Wegmans Furniture Industries Sdn Bhd	44		
4.2	Process flow in production	46		
4.3	Processing table	47		
4.4	Processing chair	48		
5.1	Triple Overhead Drilling Machine Noise Level	51		
5.2	Copy Shaper Machine Noise Level	51		
5.3	16 Head Oscillating Drilling Machine Noise Level	52		
5.4	Automatic Double End Mitre Saw Machine Noise Level	53		
5.5	Automatic Circular Saw Machine Noise Level	53		
5.6	Double Size Sander Machine Noise Level	54		
5.7	Profile Sander Machine Noise Level	55		
5.8	CNC 025 Hopper 3 Axes Machine Noise Level	55		
5.9	CNC Band Saw Machine Noise Level	56		
5.10	CNC Double End Turnover Machine Noise Level	57		

5.11	Wood dust hazard survey result question 1	58
5.12	Wood dust hazard survey result question 2	59
5.13	Wood dust hazard survey result question 3	59
5.14	Wood dust hazard survey result question 4	60
5.15	Wood dust hazard survey result question 5	61
5.16	Wood dust hazard survey result question 6	61
5.17	Wood dust hazard survey result question 7	62
5.18	Wood dust hazard survey result question 8	63
5.19	Wood dust hazard survey result question 9	63
5.20	Wood dust hazard survey result question 10	64
5.21	Chemical hazard survey result question 1	65
5.22	Chemical hazard survey result question 2	66
5.23	Chemical hazard survey result question 3	66
5.24	Chemical hazard survey result question 4	67
5.25	Chemical hazard survey result question 5	68
5.26	Chemical hazard survey result question 6	68
5.27	Chemical hazard survey result question 7	69
5.28	Chemical hazard survey result question 8	70
5.29	Chemical hazard survey result question 9	70
5.30	Chemical hazard survey result question 10	71
5.31	Ergonomic hazard survey result question 1	72
5.32	Ergonomic hazard survey result question 2	73
5.33	Ergonomic hazard survey result question 3	73
5.34	Ergonomic hazard survey result question 4	73
5.35	Ergonomic hazard survey result question 5	74
5.36	Ergonomic hazard survey result question 6	74
5.37	Working posture of respondent in packaging department	75
5.38	RULA analysis of packaging worker (Left)	76
5.39	RULA analysis of packaging worker (Right)	76
5.40	RULA analysis of cutting worker (Left)	77
5.41	RULA analysis of cutting worker (Right)	77
5.42	RULA analysis of assembly worker (Left)	78
5.43	RULA analysis of assembly worker Right)	79

6.1	Local debilitate ventilation	92
6.2	Local exhaust hood for table saw	92
6.3	Working posture of respondent in packaging department	96
6.4	RULA analysis of packaging worker (Left)	97
6.5	RULA analysis of packaging worker (Right)	97
6.6	Working posture of workers after redesign the workstation	98
6.7	RULA analysis of cutting worker (Left)	98
6.8	RULA analysis of cutting worker (Right)	99
6.9	Working posture of workers after redesign the workstation	100
6.10	RULA analysis of assembly worker (Left)	100
6.11	RULA analysis of assembly worker (Right)	101

LIST OF ABBREVIATIONS

COSHH	-	Control of Substances Hazardous to Health
CNC	-	Computer Numerical Control
DOSH	-	Department of Occupational Safety and Health
FMA	-	Factories Machinery Act
FYP	-	Final Year Project
HPDs	-	Hearing Protective Devices
HIRARC	-	Hazard Identification Risk Assessment Risk Control
LEV	-	Local Debilitate Ventilation
MSD	-	Musculoskeletal Disorders
NIOSH	-	National Institute for Occupational Safety and Health
OEM	-	Original Equipment Manufacturer
OSHA	-	Occupational Safety and Health Administration
PE	-	Polyethylene
PEL	-	Permissible Exposure limit
PPE	-	Personal Protective Equipment
RULA	-	Rapid Upper Limb Assessment
TWA	-	Time Weighted Average
UTeM	-	Universiti Teknikal Malaysia Melaka
UV	-	Ultraviolet
VOC	-	Volatile Organic Compound, Voice of Customer
WHO	-	World Health Organization

xiv

LIST OF SYMBOLS

C	-	Degree Celsius
DB	-	Decibel
G	-	gram
mg/m3	-	Milligram per cubic meter
mm	-	millimeter
sq.ft	-	Square Feet

CHAPTER 1 INTRODUCTION

1.1 Research Background

Occupational safety and health is a multidisciplinary field concerned with the safety, health, and welfare of people at work. According to Jerie (2012) occupational safety and health is very important to the employee. Every employee has a basic human rights to be safe and working in safe environment. Method and solution for the purpose of improving the hazard condition in working environment must be implemented. Accident and injuries in the furniture workplace are caused by the exposure to occupational hazards. Any types of work activity that sticks to risks are consider as hazard.

As noted by Judd and Wiedenbeck (2004), manufacturing sector especially wood product has a highest percentage of life-threatening to the employee. Employees are endangered to the different kind of machining process to produce the raw material-wood. Awodele *et al.* (2014) studied about the employees will meet different types of hazard when doing different types of work, including physical hazard, chemical hazard, safety hazard and also ergonomics hazard.

Industry plays a very important role and become a very important factor in economical financial for a country. Industry is defined as "*an economic activity concerned with the processing of raw material and manufacturer of products in a working place or factory*". In the early 19th century, Industrial Revolution occurrence has turned human from agricultural activity to industrial activity where technology and resources involved.

Industries can be divided into four different sectors or categories, which are primary, secondary, tertiary and quaternary sector of industry. Primary sector includes the activity of

mining, raw material extraction and agriculture. Secondary sector includes manufacturing, tertiary sector is service production and last quaternary is involving intellectual services. It gives chances to industry to optimize quantity of their finish product where they can fulfil the customers' requirement and satisfaction due to industrial progression towards financial increases. The top management urged among the employee to work harder without considering safety and health of their employee.

For Malaysia Government, OSHA law has been applied in the industry since year 1994. OSHA plays an important role that should be applied in organization or working place. The law and rule are always updated from time to time to make sure employee safety and health and to solve new potential risk so that the employee always had been protected.

1.2 Problem Statement

From the statistics the highest number of reported occupational disease and poisoning cases is from Penang consists of 2656 cases or 34%, the second highest is from Selangor consists of 14.3% or 1125 cases of the overall and Sabah consists of 854 cases or 10.9% have reported. Then increase to number of 3860 cases was affirmed as work occupational infections and poisonings and work environment enhancement in terms of work occupational and health was carried out. An increasing number of 2876 cases were related to work occupational noise-induced hearing disarranges, counting noise-induced hearing loss, hearing impedance and lasting standard limit move and these clutters are still the most common work occupational illness experienced by specialists (74.5%) as compared to other illnesses. This was taken after by work occupational musculoskeletal infections, for illustration increase to number of 173 cases (4.5%) and word related lung illnesses, of 98 cases (2.5%). There were no affirmed cases of word related cancer or psychosocial issue in 2016.

There are 7820 cases of work occupational illness and poisoning related to the Occupational Safety and Health Administration in 2016 as compared with a number of 5960 cases detailed to the Occupational Safety and Health Administration in the year 2015.