

THE DEVELOPMENT OF OBJECT MEASURING SYSTEM USING IMAGE PROCESSING TECHNIQUE

This report is submitted in accordance with requirement of the University Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering

by

SEAH MEI YIN B051410154 940926-04-5166

FACULTY OF MANUFACTURING ENGINEERING 2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: THE DEVELOPMENT OF OBJECT MEASURING SYSTEM USING IMAGE PROCESSING TECHNIQUE

Sesi Pengajian: 2017/2018 Semester 2

Saya SEAH MEI YIN (940926-04-5166)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

D (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

Alamat Tetap: <u>60, JALAN DUKUL 11,</u> <u>TAMAN RUMPUN BAHAGIA,</u> <u>75300 MELAKA</u>

Tarikh: 2nd JUNE 2018

Cop Rasmi:

Tarikh: _____

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "The Development of Object Measuring System Using Image Processing Technique" is the result of my own research except as cited in references.

Signature:Author's Name: SEAH MEI YIN

Date : 2nd June 2018

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Engineering Materials) (Hons). The members of the supervisory committee are as follow:

.....

(Dr. Ruzaidi Bin Zamri)

(Dr. Mohd Sukor Bin Salleh)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Sistem ukuran secara manual telah digunakan dalam bidang pertanian, pakaian, perubatan, antropometrik dan pembinaan. Sistem ini memerlukan ketepatan yang sangat tinggi dalam unit tertentu untuk mengelakkan masalah produk tidak boleh muat. Walau bagaimanapun, system ukuran secara manual tidak berfungsi seperti yang disangka kerana cara ukuran ini memerlukan masa yang banyak, keputusannya tidak tepat dan orang yang melakukan ukuran perlukan penglihatan yang tajam. Dalam automasi era, semua progress termasuk sistem ukuran dijangka tamat dalam masa yang lebih singkat dan memperoleh ukuran ketepatan yang tinggi. Oleh sedemikian, banyak penyelidik melakukan pengajian berkaitan dengan system ukuran. Pengukuran manual semakin diganti dengan kaedah pengukuran baru yang dikenali sebagai pengukuran penglihatan. Dalam era automasi sekarang, data antropometrik juga amat penting dalam gaya hidup harian manusia disebabkan oleh perluasan penggunaannya dari penggunaan tentera, industri pakaian kepada peranti elektronik seperti telefon pintar. Oleh itu, matlamat utama projek ini adalah untuk membangunkan sistem pengukuran penglihatan untuk mengukur lingkar tangan. Gabungan sistem perkakasan dan perisian dapat mengotomatisi kaedah ukuran lingkar tangan untuk menggantikan pengukuran manual. Sistem perkakasan termasuk kamera, papan induk dan komputer riba manakala sistem perisian merujuk kepada sistem pengaturcaraan. Biasanya, pengekodan untuk sistem pengukuran penglihatan tidak akan didedahkan. Sehubungan dengan itu, sumber terbuka Python digunakan sebagai bahasa pengaturcaraan untuk projek ini. Kadar berjaya untuk pengukuran penglihatan mencapai 80% dan pengukuran secara manual mencapai 100%. Perbandingan kaedah ini dalam penggunaan masa telah membuktikan pengukuran penglihatan lebih cepat. Analisis dan perbandingan antara kaedah ini mengesahkan bahawa pengukuran penglihatan boleh menggantikan pngukuran manual kerana hanya subjek number lapan bermasalah. Projek ini dijangka memperkenalkan cara automatik menggunakan pengukuran penglihatan untuk menggantikan pengukuran manual dalam usaha mendapatkan data antropometrik.

ABSTRACT

Measuring system has been used in agriculture, apparel, medicine, anthropometry and construction since the born of the manual measurement. It requires high quality of accuracy to reduce the error of unfit in the finish product. However, manual measurement is not very practical because it has been proved to be time consuming, lack of accuracy and it requires good eyesight. Due to the drive of the high demand in accuracy and shorter time in the automation era, a larger and deeper research in improving measuring data has been done. Manual measurement slowly replaced by a new method of measuring system, which is known as vision measurement. In this current automation era, anthropometric data also becomes critical in the daily lifestyle of human beings. This is because its usage has been widened from the military used, apparel industry to electronic device such as smartphone. Therefore, the main objective of this project is to develop a vision measurement system to measure hand palm. A combination of hardware and software system will fully automate in getting the measurement data to replace manual measurement. Hardware system includes a camera, a mother board and a laptop while software system refers to the programming developing system. Normally, the coding for the well-developed vision measurement system will not reveal. Hence, open source Python is used as the programming language for this project to demonstrate the automation in measurement. Finally, data collection for both methods is done and the successful rate for vison and manual are 80% and 100% respectively. Comparison in terms of time consumption proved that vison method is faster than manual method. Lastly, analyzed and compared these two type of measuring system concluded that vision method can replace manual method because only data subject number eight has error. An improvement and further analysis in future can minimise and eliminate this problem. Therefore, this project is expected to introduce an automatic way using vision measurement to replace manual measurement to get anthropometric data.

DEDICATION

Special thanks to my one and the only my beloved parents, Seah Tiong Sui and Lim Beng Huat and to my adored sisters,

for giving me moral support, money, cooperation, encouragement and also understandings. Thank you to all my friends who willing to support me in data collection. I also want to say thank you to my kind and helpful supervisor, Dr Ruzaidi Bin Zamri for your guidance and support at all times.

Lastly, appreciation goes to my knowledgable and experience examiners for spending your precious time reading my draft and corrected me during my presentation.

ACKNOWLEDGEMENT

Thank you for my surrounding people and my strong determination and spirit I manage to complete this final year project successfully by solving all the difficulties one by one. It was really a long process with challenging hardship.

My respected supervisor, Dr. Ruzaidi Bin Zamri. His kindness, unwavering patience and mentorship guided me through the process, his easily understood explanations and open mind allowed me to grow and learn in such a way that I am now a better researcher. Besides that, I would like to express my gratitude to the library staff and all the lecturers for their kind support in different way, advice and guidance as well as push me back to the correct direction when I was lost throughout the study.

Also, I would like to give a special thanks to my best friends who gave me much motivation and cooperation mentally in completing this report especially when I really wanted to give up and change title due to the stress of unable to solve the difficulties. They had given their critical suggestion and comments throughout my research. Thanks for the great friendship.

Finally, I would like to thank everybody who play an important role in supporting me to complete this FYP report.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	V
List of Tables	ix
List of Figures	xi
List of Abbreviations	xiv
List of Symbols	xvi

CHAPTER 1: INTRODUCTION

1.1	Research background	1
1.2	Problem statement	3
1.3	Objectives	4
1.4	Scopes of the research	5
1.5	Summary	6

CHAPTER 2: LITERATURE REVIEW

2.1	Introduction 7		
2.2	.2 Manual measurement		
	2.2.1	Measuring instruments	8
	2.2.2	Issues of manual measuring	8
2.3	Vision	measurement	10
2.4	Digital	image processing technique	13
	2.4.1	Image (grayscale) segmentation	14
	2.4.2	Image (color) segmentation	20
	2.4.3	Edge detection and segmentation	23
2.5	Journa	l review	27
	2.5.1	Journal review table	27

CHAPTER 3: METHODOLOGY

3.1	Introduction 29			
3.2	Overview of methodology			29
3.3	Litera	ture review		31
3.4	Projec	t planning		31
3.5	Syster	n developm	nent	32
	3.5.1	Hardware	e system	33
		3.5.1.1	Hardware system specifications and features	36
	3.5.2	Software	system	37
	3.5.3	Installatio	on guide	38
		3.5.3.1	Hardware installation guide	38
		3.5.3.2	Software installation guide	40
3.6	Progra	umming dev	velopment	47
	3.6.1	Start		49
	3.6.2	Camera s	etup	50
	3.6.3	Image acc	quisition	50
	3.6.4	Image pre	e-processing	51
	3.6.5	Image cla	ssification	53
	3.6.6	Label con	nponents	54
	3.6.7	Measuren	nent	56
	3.6.8	Output re	sult	57
	3.6.9	End		57
3.7	Syster	n Testing		58
	3.7.1	Experime	ental setup	58
	3.7.2	Camera te	esting	60
	3.7.3	Experime	ental procedure	61
		3.7.3.1	Start	61
		3.7.3.2	Hand positioned	62
		3.7.3.3	Image captured	62
		3.7.3.4	Programming	62
		3.7.3.5	Result	63
		3.7.3.6	End	63

vi aknikal N

C Universiti Teknikal Malaysia Melaka

	3.7.4 Expected result			64
3.9	Data Analysis and Verification			64
3.10	Summary			65
CHA	PTER	4: RESUL	T AND DISCUSSION	
4.1	Introd	uction		66
4.2	Progra	mming		66
	4.2.1	Flowchar	texplanation	68
		4.2.1.1	start	68
		4.2.1.2	camera_setup	68
		4.2.1.3	n=1	69
		4.2.1.4	decision making 1: camera setup ready?	69
		4.2.1.5	image_capture ()	69
		4.2.1.6	read image	70
		4.2.1.7	hand=get_hand_contour (image)	70
		4.2.1.8	decision making 2: has hand segmented?	71
		4.2.1.9	(erode, approx.) = hand	71
		4.2.1.10	fingers = count (erode, approx.)	71
		4.2.1.11	main (approx., exTop, hull)	74
		4.2.1.12	show image	75
		4.2.1.13	save image	76
		4.2.1.14	decision making 3: continue?	76
		4.2.1.15	camera terminates and closes	76
		4.2.1.16	end	76
4.3	Data co	ollection		76
	4.3.1	Vision rea	ading	79
	4.3.2	Manual re	eading	80
4.4	Compa	rison and a	nalysis on data collection	82
	4.4.1	Duration	needed on taking measurement	83
		4.4.1.1	Analysis on average mean of time taken on both	
			measuring method	84
	4.4.2	Analysed	and compared two type of hand measuring methods	85
		4.4.2.1	Finger length	86
		4.4.2.2	Palm length	89

vii

C Universiti Teknikal Malaysia Melaka

	4.4.2.3	Palm breadth	92
	4.4.2.4	Finger vs palm (shape) index	95
4.5	Summary		97
CHA	APTER 5: CONC	LUSION AND RECOMMENDATION	
5.1	Conclusion		98
5.2	Bill of material (BOM)	99
5.3	Sustainable desig	gn and development	100
5.4	Complexity 1		
5.5	Long life learnin	g (LLL) and basic entrepreneurship	102
5.6	Limitation		102
5.7	Recommendation	ns and suggestions	103
REF	FERENCE		106

APPENDIX

А	Journal list	114
В	Summarized of the journals review	118
С	Gantt chart for FYP I	129
D	Gantt chart for FYP II	130
Е	Source code	131

LIST OF TABLES

2.1	Summary of the parameter used in 70 journals	27
3.1	Hardware components and description	33
3.2	The model of the Lenovo laptop, Raspberry Pi and Raspberry camera	36
	module	
3.3	Specifications and features	36
3.4	Extra parts needed	38
3.5	List of installers	40
3.6	Examples of essential library	49
3.7	Library for Picamera	49
4.1	Vision measurement data collection	77
4.2	Manual measurement data collection	78
4.3	Result for vision reading	79
4.4	Mean of time taken every hand measurement for manual measurement	83
4.5	Mean of time taken every hand measurement for vision measurement	83
4.6	Data of an agreement between two methods for finger length	86
4.7	Data of an agreement between two methods for palm length	89
4.8	Data of an agreement between two methods for palm breadth	92
4.9	Data of an agreement between two methods for finger vs palm (shape)	
	index	95

5.1 Bill of material (BOM)

LIST OF FIGURES

1.1	Royal Cubit	1
1.2	Vernier caliper	3
1.3	Digital caliper	4
1.4	Finger length, palm breadth and palm length	5
2.1	Martin anthropometer	8
2.2	General scheme for segmentation and its evaluation	14
2.3	Histogram of image	15
2.4	An example of binary set of segmented image	17
2.5	Workflow for hand shape and geometrical feature extraction	17
2.6	Workflow for traffic queue line segmentation	18
2.7	Original image (left), binary flesh image (middle), binary calyx	18
	image (right)	
2.8	Workflow to measure the cucumber seed (left) and kernel (right)	19
2.9	RGB in 3-Dimensional cube	21
2.10	Workflow of the mango grading algorithm	22
2.11	Images of field taken during (a) 25 th Dec, (b) 15 th Jan, (c) 13 rd Jan,	
	(d) 4 th Mac	22
2.12	Seven techniques of edge detection	24
2.13	Flow chart for edge detection	25
2.14	Main features extracted from the image using edge detection and	
	segmentation	26
2.15	Process to determine the chalky in the grain (rice)	26
3.1	Flow chart of the vision based hand measuring procedure	30
3.2	Flowchart of the hardware system	34
3.3	Raspberry Pi and Raspberry camera module	35
3.4	Python logo	37
3.5	Ports on Raspberry Pi controller	39

3.6	Picamera installation guide	39
3.7	Interfacing options	41
3.8	Remote Raspberry Pi screen	41
3.9	Terminal on Raspberry Pi remote access screen	42
3.10	Expand filesystem configuration	42
3.11	Verify the Python with OpenCV installation	46
3.12	The sequence of image processing technique	48
3.13	Pre-image processing	51
3.14	Thresholding	52
3.15	Closing morphological operation	52
3.16	Type of contour approximation method	53
3.17	Original image, image with 10% epsilon and image with 1% epsilon	54
3.18	Results of convex hull and convexity application	55
3.19	Parameters and the formula for finger vs. palm (shape) index	56
3.20	Experimental setup	59
3.21	Height and length of the hardware setup	59
3.22	Correct angle and position of image captured	60
3.23	Experimental procedure	61
3.24	Progress of experimental procedure	63
4.1	Flowchart of the programming	67
4.2	Image captured	69
4.3	Flow in get_hand_contour (image) sub-function	70
4.4	Combination of drawing circle and rectangle to count the number of	
	fingers	71
4.5	Flowchart for hand verification	73
4.6	Image processing technique on hand verification	74
4.7	Flowchart on how to find far defect points	75
4.8	An example of the complete image	75
4.9	Percentage for vision reading	80
4.10	Process of taking manual reading	81
4.11	Palm length measurement using Vernier caliper	81
4.12	Data recorded and using phone timer to record time	81
4.13	Percentage for manual reading	82

4.14	Formula of mean	83
4.15	Histogram of average mean time taken on both measuring method	84
4.16	Regression line graph of finger length	87
4.17	Bland Altman plot for finger length	88
4.18	Regression line graph of palm length	90
4.19	Bland Altman plot for palm length	91
4.20	Regression line graph of palm breadth	93
4.21	Bland Altman plot for palm breadth	94
4.22	Regression line graph of finger vs palm (shape) index	96
4.23	Bland Altman plot for finger vs palm (shape) index	97
5.1	Progress of experimental procedure	100

Progress of experimental procedure 5.1

LIST OF ABBREVIATIONS

BC	-	Before christ
SI	-	Système internationale / International system
PSFS	-	Patient-specific functional scale
GUI	-	Graphic user interface
3D	-	3-Dimensional
2D	-	2-Dimensional
ROI	-	Region of interest
RGB	-	Red green blue
BGR	-	Blue green red
TI	-	Thermal index
MRI	-	Magnetic resonance imaging
СТ	-	Computer tomography
HSL	-	Hue-saturation-luminance
EMT	-	Edge maximum technique
IEEE	-	Institute of electrical and electronics engineers
UTeM	-	University Teknikal Malaysia Melaka
RPi	-	Raspberry Pi
GPU	-	Graphics processing unit
OpenCV	-	Open source computer version
CPU	-	Central processing unit
RAM	-	Random access memory
HDD	-	Hard disk drive
LAN	-	Local area network
FDH	-	Fibre distribution hub
LED	-	Light emitting diode
OS	-	Operating system
SL	-	Single language
WiFi	-	Wireless fidelity
BLE	-	Bluetooth low energy

GPIO	-	General purpose input/output
USB	-	Universal serial bus
HDMI	-	High definition multimedia interface
CSI	-	Camera serial interface
SD	-	Secure digital
FYP I	-	Final year project I
FYP II	-	Final year project II
FFC	-	Flexible flat cable
VNC	-	Virtual network computing
HPF	-	High-pass filters
LPF	-	Low-pass filters
VS	-	Versus
Jpg	-	Joint photographic expert group
STD	-	Standard deviation
LOA	-	Limit of agreement
LED	-	Light emitting diode
BOM		Bill of material
ECM		Environmental conscious manufacturing
LLL		Long life learning
BE		Basic Entrepreneurship

LIST OF SYMBOLS

BC	-	Before Christ
SI	-	Système Internationale / International System
%	-	Percentage
π	-	Pi
r	-	Radius
mm	-	Millimetre
Σ	-	Summation
$\overline{\mathbf{X}}$	-	Mean

CHAPTER 1 INTRODUCTION

1.1 RESEARCH BACKGROUND

Measurement system provides unit to outline the identity and characteristic of a product. The identity and characteristic include value, size and shape of the product. It is widely used and great contributes in agriculture, education, construction, food and clothes industry. Measurement system was originated in the 3rd millennium BC. This was the period when human beings started to transform from a moving to a nomadic lifestyle. With a replacement of money to trade from exchange system, known as "Barter System", the measurement system became critical. The slowly growing of trading importance between community and across the world elevated the growing of measurement system to a higher accuracy and increasingly diverse set of fields. The first of measurement technique and standard were created during the Egyptians time when Royal Cubit (Figure 1.1) was use as today's length measurement. It was a technique measure from the distance from Pharaoh's elbow to his fingertips (David Flack, October 2012). Today, the science of measurement term is known as metrology. It involves dimensional measurement which defines as a measuring of an artefact. Artefact can be the diameter of a ball, the length of a table and the volume of a bottle. In metric world, the SI unit of length is meter and it is possible to switch to millimeter, centimeter, kilometer and other related measurement (Flack, 2009).

Figure 1.1: Royal Cubit

1

To study a variety of human's aspects within past and present societies, an anthropologist engages in the practice of anthropology. Human body measurement is collected to complete the anthropometric data of community. The data collected is useful for military database, educational and future research. The future research includes a previous study to investigate the reliability of Patient-Specific Functional Scale (PSFS) by measuring the PSFS with a standard error to justify the reliability of the clinical utility (Wright et al., 2018). There are also plenty of ergonomics researcher seeks to improve the ergonomics data to study deeper on the behavior of specific community. A group of researchers came up with an idea using the hand dimensions and index finger length ratio to determine the gender. They concluded using hand dimensions can detect the gender in forensic identify investigation (Ibrahim et al., 2016). In 2016, researchers measured the hand morphometry at different gestational ages babies. They said the data is important for industrial applications especially in gripping performances of pre-term baby things (Honoré et al., 2016).

With the rapid growing of technology in modern era, the manual measuring instrument slowly replaced by digital measuring instrument and now vision measuring instrument. Two-dimensional (2D) photogrammetry was served as the primary sources for craniofacial measurement data to covered the inaccuracy of direct anthropometry and it was then transformed to three-dimensional (3D) imaging technique such as laser surface scanner and stereo-photogrammetry for craniofacial investigation (Weinberg et al., 2004). A hand anthropometry survey was carried out and electronics digital caliper with an accuracy of 0.01mm was used to measure twenty-four hand dimensions (Mandahawi et al., 2008). Vision sensing and image processing compile with machine visual identification technology is largely used in automation industry due to its fast speed and high accuracy (Min & Principle, 2015). It must comply with the application of digital image processing and a computer to transfer an image or video from the camera and then using algorithms to measure the subject parameter or track the motion of an object in the image. Using a combine method of photogrammetry and digital image processing can make real time traffic measurement to adjust the timings of traffic lights (Zhu et al., 2015). Jing Min mentioned that a new detection technology using machine vision can replace traditional techniques of detecting screw thread (Min & Principle, 2015).

Vision measuring method is the current most effective advance method and most of its application use in the field of automation industry to speed up the parameter measuring of components of electronics, appliances or material. It can be very useful especially in anthropometric and clinical categories. For example, digital image processing technique measured the torsion from eye multitemporal based on the eye image (Parker et al., 1985).

1.2 PROBLEM STATEMENT

The method of measuring 3 selective parts of hand, which are palm breadth, palm length and finger length is still using Vernier caliper (Figure 1.2) or digital caliper (Figure 1.3). It is not surprised that every single measurement is subject to uncertainly (Paolo et al., 2017). There are many type of errors occurred proven by previous research stated that direct measurement is not reliable. According to the authors of Fundamentals of Dimensional Metrology book, caliper is difficult to follow Abbe's Law to achieve high accuracy because there are always errors (Flack, 2009). Errors appears with the reason of the untreated experimental measuring apparatus intervals (Krechmer, 2018) In measurement, risk of human error is associated with operator error which includes physical and mental stress state that lead to observational error and wrong formal procedures as well as response options (Paolo et al., 2017). Reading the calliper requires good eyesight and skill to avoid misreading (Flack, 2009). The manufacturers can only manipulate the error to minimum but they cannot eliminate the error (Dotson, 2016).

Figure 1.2: Vernier caliper

3

Figure 1.3: Digital caliper

Besides, proceeding a measurement using caliper is very time consuming (Kohnen, 2002). The lack of accuracy and time consuming may become main issue in automation era. Hence, there is a need to replace this traditional manually measuring hand method with a faster, higher accuracy and easier method. Not only that, many researchers do not reveal their measurement coding. Therefore, that is a need to demonstrate automation in measurement. Coding is developed with the used of open source software known as Python.

1.3 OBJECTIVES

The objectives are as follows:

- (a) To develop an image processing coding for hand breadth, hand palm and finger length measurement and compute finger vs palm (shape) index.
- (b) To validate vision sensor measurement method with manual measurement method in term of time consumption.
- (c) To compare vision sensor measurement method with manual measurement method.