

DEVELOPMENT OF SEMI-AUTOMATED AMPLANG PACKAGING MACHINE

This report submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Hons.)

by

ROBERT ANAK SANGGIN B051410172 941230-13-5635

FACULTY OF MANUFACTURING ENGINEERING

2018

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF SEMI-AUTOMATED AMPLANG PACKAGING MACHINE

Sesi Pengajian: 2017/18 Semester 2

Saya ROBERT ANAK SANGGIN (941230135635)

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (\checkmark)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TER	HAD
	Disahkan oleh:
Alamat Tetap:	Cop Rasmi:
Tarikh:	Tarikh:
	IT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau

DECLARATION

I hereby, declared this entitled "Development of Amplang Packaging Machine" is the results of my own research except as cited in reference

Signature	:
Author's Name	: ROBERT ANAK SANGGIN
Date	:

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering with Honors. The members of the supervisory committee are as follow:

(DR. SYAMIMI BINTI SHAMSUDDIN)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Projek ini menerangkan mengenai pembangunan mesin pembungkusan amplang separa automatik. Pembangunan mesin hanya memberi tumpuan pada pembungkusan amplang dan bukan untuk bagaimana amplang itu dibuat. Mesin ini direka khusus untuk meningkatkan kadar pengeluaran syarikat perusahaan sederhana dan kecil seperti Rosmie Bersaudara Sdn Bhd di Sabah. Syarikat ini bergantung sepenuhnya kepada pekerja manual untuk mengisi makanan ringan amplang ke dalam paket plastik. Ini memerlukan banyak masa. Dengan mesin baru, masa yang diambil untuk pekerja membungkus satu paket amplang akan lebih pendek. Oleh itu, kesegaran amplang akan dikekalkan. Mesin ini menggunakan mikrokontroler Arduino Uno dan sensor sel beban untuk mengukur berat amplang sebelum paket dimeteraikan. Untuk mensimulasikan litar elektrik, perisian Fritzing telah digunakan. Dalam hasilnya, mesin itu mampu membungkus 100 g berat amplang. Mesin ini terdiri daripada lorong penyuapan getaran, pemeterai dan sensor sel beban yang digunakan untuk process menimbang dan membungkus. Masa yang diambil untuk amplang yang ditimbang untuk mencapai 100 g adalah kira-kira 8.17 saat untuk satu paket sahaja. Harga keseluruhan mesin ini ialah RM715.89 termasuk kos bahan dan perkakasan yang telah digunakan. Berdasarkan hasilnya, projek objektif untuk menimbang berat amplang pada keadaan berat yang sama iaitu 100 g telah dicapai. Oleh itu, mesin ini telah direka bentuk dan berjaya dengan fungsinya untuk menyokong syarikat pembuatan amplang.

ABSTRACT

This project describes the development of a semi-automated amplang packaging machine. The development of machine only focused only on packaging of amplang and not for how amplang was made. This machine is specifically designed to increase the production rate of an SME company of Rosmie Bersaudara Sdn Bhd in Sabah. This company totally relies on manual workers to scoop the amplang snacks into the plastic packet. This requires a lot of time. With the new machine, the time taken for the workers to package one packet of amplang will be shorter. Thus, the freshness of amplang will be preserved. This machine implements Arduino Uno microcontroller and a sensor of load cell to measure the weight of amplang before the packets are sealed. To simulate the electric circuit, Fritzing software was used. In results, the machine able to packed 100 g weight of amplang. This machine consists of vibrational feeder lane, sealant and load cell sensor for weighing and packaging process. The time taken for the amplang to be weigh and reach 100 g is about 8.17 seconds. The overall price for this machine is RM715.89 including cost of material and hardware that have been used. Based on the results, this machine able to weight the amplang with similar weight of current process. Therefore, the machine has been designed and fabricated successfully with their functionality to support amplang manufacturing company.

DEDICATION

To my beloved Gema Family, My Parents and Friends.

ACKNOWLEDGEMENT

First of all, I would like to express my deepest appreciation to all those who provided me the possibility to complete this report. A special gratitude I give to our final year project supervisor, Dr. Syamimi binti Shamsuddin, whose contribute in completing writing report, give an advice and giving my opportunity to join any competition to proposed my project and increase my self-confidence to do a presentation in front of people and panels.

Furthermore, I would also like to acknowledge with much appreciation the crucial role of the staff of FKP, En. Ghazalan, Ms. Siti Nabilah bt Abd Latiff, En. Nizamul Ikbal, En. Remy and others staff. Without whom the project might not completed successfully especially in fabrication processes.

And lastly, it was a bad day without having my friends beside me especially to my 11 housemates who always understand and support me. I wish you all the best in future.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Content	V
List of Tables	ix
List of Figures	х
List of Abbreviations	xiii
List of Symbols	xiv

CHAPTER 1: INTRODUCTION

1.1	Background	1
	1.1.1 Packaging process at small and medium enterprise (SMEs)	3
1.2	Problem Statement	4
1.3	Project Objectives	6
1.4	Scope and Limitation	7
1.5	Importance of this project	8
1.6	Project Planning	9
1.7	Summary	10

CHAPTER 2: LITERATURE REVIEW

2.1	Requi	rement of a Food Packaging Machine	11
2.2	Eleme	nts of a Food Packaging Machine	12
	2.2.1	Microcontroller	13
	2.2.2	Sensor	15
	2.2.3	Electric actuator	17
	2.2.4	Mechanical element	20
	2.2.5	Sealing mechanism	25
2.3	Applic	cation of Semi-Automated Weighting Operations in Other Country	26
2.4	Review	w from Similar Previous Studies	27
2.5	Summ	ary	28

CHAPTER 3: METHODOLOGY

3.1	Introduction	29
3.2	Flow Chart of an Overall Amplang Packaging Process	32
3.3	Project Tools and Materials	33
	3.3.1 Electric hardware	33
	3.3.2 Software requirement	36
3.4	Raw Material for Machine Structure	39
3.5	Manufacturing Process	40
	3.5.1 Welding	40
	3.5.2 Assembly	42
	3.5.3 Painting and finishing	42
3.6	Current Machine Design	44
3.7	Process Flow Chart of Machine Operation	45
3.8	Flow Chart of Programming Operation	46
3.9	Summary	47

CHAPTER 4.0: MACHINE DEVELOPMENT

4.1	Fabric	eation Process	49
	4.1.1	Laser cutting	50
	4.1.2	Bending	51
	4.1.3	Welding	56
	4.1.4	Grinding	57
4.2	Raw M	Material	58
	4.2.1	Stainless Steel	59
	4.2.2	Hollow square mild steel	60
4.3	Softw	are Requirement	61
	4.3.1	Machine design using CATIA V5	61
	4.3.2	SolidWorks 2013	64
	4.3.3	Arduino IDE for Arduino controller	66
	4.3.4	Fritzing	68
4.4	Mach	ine Features	68
4.5	Final	Product	71

CHAPTER 5.0: RESULTS AND DISCUSSION

5.1	Introd	uction	72
5.2	Component Testing and Verification		73
	5.2.1	Verification motor driver and 12V DC geared motor with Arduino	
		connection	73
	5.2.2	Load cell sensor efficiency	73
	5.2.3	Sealant functionality	74
	5.2.4	Vibrational feeder lane	75
5.3	Bill of	Materials (BOM) with Cost	78
5.4	Summ	arize of Machine Functionality	79

CHAPTER 6.0 CONCLUSION AND RECOMMENDATION

6.1	Conclusion	80
6.2	Recommendation for Future Works	81
6.3	Sustainability of Machine Development	81
REFE	RENCES	82
APPE	NDICES	86
А	Gantt chart FYP II	86
В	Certification of participant in iNOTEK 2018 (UTeM)	87

LIST OF TABLES

1.1	Summary of scope	8
2.1	Electric hardware and software	13
2.2	Type of resistive load cells	16
2.3	The deflection and response of load cell when get contact by a load	17
2.4	The differences type of gear transmission	20
2.5	Basic component and its functionality	23
2.6	Findings from previous studies of food packaging machine	27
2.7	Summary of all components needed	28
3.1	Electric hardware and Software	31
3.2	The list of raw materials used	39
3.3	The differences of TIG and MIG	41
3.4	Summary of material, electric hardware, and software	47
4.1	The 2D part will bend as 3D part	55
4.2	Part name and design	62
4.3	Part name and 2D drawing in DXF format	65
5.1	The time taken for 100 g of amplang to be weighed (15 times)	77
5.2	Bill of materials amplang packaging machine	78
5.3	Machine features and its functionality	79

LIST OF FIGURES

1.1	Amplang snack	2
1.2	An example of amplang packaging	3
1.3	Process of filling and weighing the amplang into plastic packet	4
1.4	The workers scoop amplang to the plastic packet	5
1.5	Previous packaging and weighing machine of amplang	6
2.1	Block diagram of a microcontroller	14
2.2	The differences between three types of Arduino	14
2.3	Shows the block diagram to develop microcontroller Arduino	15
2.4	The deflection and response of load cell when get contact by a load	17
2.5	The typical pulse of servo motor	18
2.6	The principle of a DC Motor	19
2.7	Side views of conveyer system	22
2.8	Front views of conveyer system	23
2.9	Rack and pinion gears	24
2.10	The process of filling and weighing the amplang to plastic packet	26
3.1	Machine development based on SLDC model	29
3.2	Steps of Methodology	30
3.3	Male-to-male and female-to-female jumper wire	34
3.4	Servo motor	34
3.5	LCD display (16-pin)	35
3.6	Load cell and HX711 Amplifier	35
3.7	Brushed DC motor	36

3.8	Software requirement to develop this project	37
3.9	An example of IDE interface	37
3.10	An example of Fritzing interface on PC-based	38
3.11	An example of spray can	43
3.12	Front view of current design amplang packaging machine	44
3.13	Side view of current design amplang packaging machine	44
3.14	The process flow chart of an operation	45
3.15	The flow chart of programming operation	46
4.1	Fabrication process	49
4.2	Laser cutting working principle	50
4.3	Mitsubishi ML2512HV2-R Plus laser cutting process operation flow	51
4.4	Bending machine	52
4.5	Bending machine Armada RG-80 at FKP workshop	53
4.6	Bending machine operation	54
4.7	The machine parts before and after the welding process	56
4.8	Examples of slag inclusion	57
4.9	Types of material use on different parts of machine	58
4.10	Stainless steel sheet metal	59
4.11	The body structural using Hollow Square mild steel	60
4.12	CATIA V5 interface	62
4.13	An examples code programming using Arduino IDE	67
4.14	Example of fritzing circuit design	68
4.15	Machine features of amplang packaging machine	69
4.16	Example of vibrating vibration motor concept	69
4.17	Load cell sensor and amplifier HX711	70
4.18	Nichrome wire	70

4.19	Amplang packaging machine in 3D drawing before and after fabrication process	71
5.1	An example of load cell measurement accuracy using nail clip	74
5.2	Sealant process	75
5.3	The 12V DC motor attached to feeder lane	75
5.4	Motor only and motor with gear box	76

LIST OF ABBREVIATIONS

SME	-	Small and Medium Enterprise
LCD	-	Liquid Crystal Display
DC	-	Direct Current
PCB	-	Printed Circuit Board
CAD	-	Computer-Aided Design
CAE	-	Computer-Aided Engineering
SDLC	-	System Development Life Cycle
FKP	-	"Fakulti Kejuruteraan Pembuatan"
MCU	-	Microcontroller Unit
USB	-	Universal Serial Bus
PWM	-	Pulse Width Modulation
ICSP	-	In-Circuit Serial Programming
RPM	-	Revolution per Minute
ABS	-	Acrylonitrile Butadiene Styrene
IDE	-	Integrated Development Environment
LED	-	Light Emitting Diode
TIG	-	Tungsten Inert Gas
MIG	-	Metal Inert Gas
HAZ	-	Heat Affected Zone
DXF	-	Drawing Interchange Format or Drawing Exchange Format
BOM	-	Bill of Materials
RFID	-	Radio Frequency Infrared Detector

LIST OF SYMBOLS

V	-	Voltage
G	-	Gram
Kg	-	Kilogram
mA	-	Milliampere
kB	-	Kilobits
ms	-	Milliseconds
MHz	-	Mega Hertz
Oz-in	-	Ounce inch
А	-	Ampere
mm	-	Millimeter
°F	-	Fahrenheit
%	-	Percentage
S	-	Second(s)

CHAPTER 1

INTRODUCTION

1.1 Background

In the food packaging industry, increasing demand and stiff competition makes it imperative for producers to improve the purchasing process. This study aims to solve problems related to food packaging in Malaysia. This study focuses on a packaging problem at a small and medium scale enterprise (SME) in Sabah. Malaysia is a country blessed with a wonderful blend of cultures. There are various types of religion, nation and races, this were contributed to different ethnic and traditional food. In Sabah, there is one famous food name as amplang as shown in Figure 1.1. Amplang is a type of square crackers that become a family snack eaten while sipping hot coffee, the people do not know why the crackers are square not round or any other form (Ishak, 2009).

Figure 1.1: Amplang snack (Ucop, 2015)

One of the major SME that produces amplang is name as Perniagaan Rosmie Bersaudara in Tawau. According to Fauzrina Bulka, the founder of this amplang snacks food producer was Rosmie Nariddin, 63 years old. He was operated this SME at his own home and was worked out by 10 workers at early started on 1990 at Kampung Muhibbah Raya, Tawau. Now, the job was giving to his son name as Rozekin Suratman, 37 years old and the workers are double or more as their average profit RM60,000 per month roughly (Bulka, 2016).

This company packs about 100 kilogram of amplang per day or more depends on order. Today, the wholesale price for this amplang was increased due to unsustainable local economy. The price for 1 kilogram is RM20, for 500 gram the price will RM10, for 200 gram the price is RM5 and for 100 gram the price is RM3. In addition, according to Rozekin the main ingredients are Mackerel (kind of fish), powder and small shrimps stayed mix together to become amplang. They also have separate recipe that inherited from his family and cannot be told or share with others, except for his inheritance.

Figure 1.2: An example of amplang packaging (Aniawatitri, 2011)

1.1.1 Packaging Process at Small and Medium Enterprise (SMEs)

The main purpose of designing and simulation of low cost packaging machine in synchronization with assembly line was to provide the small sector food industry (MSME) or (SMEs) with a platform that they are able to process their food item in safe packets by reducing the cost of packaging machines (Singh and Chaurasia, 2016). The author also added that he did it through designing the whole machine in virtual environment (SolidWorks 2013) where every component was based on standard available mainly electronic part for automation (semi-automation).

In Malaysia, these SME is important in the development and growth of Malaysia economic (Khalique and Jan Khan, 2014). As stated by SME International Malaysia (2013) the SMEs forms an important part of some advanced succeeded economies, which comprising over 98% of total establishment and contributing to over 65% of employment as well over 50% of the gross domestic product.

1.2 Problem Statement

The main problem statements that need to be considered when carrying out this project are stated below:

(a) Manually operated packaging process

The problem that occur at Rosmie Bersaudara industries is that only manual worker are employed to do amplang packaging, in which the workers only scoop the amplang into the package and measure the weight of each fulfill pouch using electronic balancing as shown on Figure 1.3.

Figure 1.3: Process of filling and weighing the amplang pouch (Bulka, 2016)

(b) Time consuming

The time cycle for completing the packaging of one pack amplang have to be shortened and seal properly to preserve the freshness of amplang. The Figure 1.4 also shows that the amplang may expose to the air for a longer time and the freshness of amplang will be decreases.

Figure 1.4: The workers scoop amplang into plastic packet (Hassan, 2015)

(c) Hygiene and cleanliness

As the amplang was expose to the air for a long period of time, the amplang may contaminated from the dust or other unwanted substances.

(d) Current prototype and improvement

Previously, the first design of this machine was for the Mechatronics project as shown on Figure 1.5. The machine did not function effectively especially on the door of chamber before amplang drop and fill the pouch. The design of door was not idle to the chamber and need to design again. Thus, the chamber also needs to redesign again regarding to the patent of filler machine from industries.

Figure 1.5: Previous packaging and weighing machine of amplang.

1.3 Project Objectives

The ultimate goal of this project is to ease the workers at Perniagaan Rosmie Bersaudara Sdn. Bhd that rely 100% on manual packaging for a large amounts of amplang production. The specific objectives that need to be achieved are:

- (a) To design a semi-automated amplang packaging machine with the functionality of weight measurement, safe sealing and vibrational feeder lane for an amplang manufacturing company.
- (b) To develop the amplang packaging machine and test its sealant function, load cell sensor and vibrational feeder lane to produce packages that weighs of 100 g each.