INVESTIGATION ON THE TRIBOLOGICAL AND HARDNESS PROPERTIES OF NICKEL-QUARRY DUST COMPOSITE COATING PREPARED BY VARIOUS SURFACTANT CONTENTS

ELYSSA ELNNA BINTI BADRULZAMAN KHAN B051410324

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2018

C Universiti Teknikal Malaysia Melaka

INVESTIGATION ON THE TRIBOLOGICAL AND HARDNESS PROPERTIES OF NICKEL-QUARRY DUST COMPOSITE COATING PREPARED BY VARIOUS SURFACTANT CONTENTS

This report is submitted in accordance with requirement of the University Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering

by

ELYSSA ELNNA BINTI BADRULZAMAN KHAN B051410324 950108-13-6014

FACULTY OF MANUFACTURING ENGINEERING 2018

ا ملاك UNIVER	TI TEKNIKAL MALAYSIA MELAKA
	BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk:INVESTIGATION ON THE TRIBOLOGICAL AND HARDNESS
PROPERTIES OF NICKEL-QUARRY DUST COMPOSITE COATING
PREPARED BY VARIOUS SURFACTANT CONTENTS

Sesi Pengajian: 2017/2018 Semester 2

Saya **ELYSSA ELNNA BINTI BADRULZAMAN KHAN (950108-13-6014)** mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syaratsyarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

Image: Mengandungi maklumat yang berdarjah keselamatan atau kepentinganSULITMalaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh
organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TI	ERHAD
----------	-------

Disahkan oleh:

Alamat Tetap: LOT 2,P.O.BOX	Cop Rasmi:
17,KAMPUNG SEPURAU.	
98150,BEKENU,MIRI,	
SARAWAK	
Tarikh:	Tarikh:

C Universiti Teknikal Malaysia Melaka

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Investigation on the Tribological and Hardness Properties of Nickel-Quarry Dust Composite Coating Prepared by Various Surfactant Contents" is the results of my own research except as cited in references.

Signature	:
Author's	: ELYSSA ELNNA BINTI BADRULZAMAN KHAN
Name Date	:

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the Degree of Bachelor of Manufacturing Engineering (Manufacturing Material). The member of supervisory is as follow:

Dr. Intan Sharhida Binti Othman (Project Supervisor)

.....

Dr. Rose Farahiyan Binti Munawar (Project Co-Supervisor)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Kajian ini akan menyiasat kesan pelbagai kandungan surfaktan pada permukaan morfologi, kekerasan dan sifat memakai lapisan komposit Ni-QD pada aluminium 7075. Lima kandungan surfaktan berbeza disediakan pada 0.3g / L, 0.6g / L , 0.9g / L dan 1.2g / L. Proses elektrodeposisi dilakukan pada 1 jam dan haba dirawat pada 200°C dan 400°C. Dalam kajian ini, nikel digunakan sebagai matriks manakala debu kuari sebagai zarah pengukuhan. Debu quarry dihancurkan menjadi zarah yang lebih halus dengan menggunakan mesin penggilingan bola dan saiz zarah ditentukan dengan menggunakan Particle Size Analyzer (PSA). Lapisan komposit akan ditentukan dan diuji dengan menggunakan X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Mikroskopi Pengimbasan Elektron (SEM, ujian haus dan kekerasan.) Kekerasan lapisan komposit Ni-QD meningkat dengan rawatan haba. Terdapat beberapa kelebihan yang boleh diperolehi daripada kajian ini terutamanya dalam industri aeroangkasa dan automotif.

i

ABSTRACT

The study is about to investigate the effect of various surfactant contents on the on the surface morphology, hardness and wear properties of Ni-QD composite coating on aluminium alloy 7075. Five different surfactant contents were prepared at 0.3g/L, 0.6g/L, 0.9g/L and 1.2g/L. Electrodeposition process was carried out at 1 hour and heat treated at 200°C and 400°C. In the study, nickel use as a matrix while quarry dust as the reinforcement particles. The quarry dust is crushed into more finer particles by using ball milling machine and the size of the particles are determined by using Particle Size Analyzer (PSA). The composite coating will be determined and tested by using X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM, wear and hardness test. The hardness of Ni-QD composite coating increased by heat treatment. There are some advantages that can be obtained from this study especially in aerospace and automotive industry.

DEDICATION

То

My beloved father, Badrulzaman Khan Bin Abdul Han My lovely mother, Noraini Binti Jais My caring siblings, Norull Azam Khan and Norull Aziq Khan My supportive supervisor, Dr Intan Sharhida Binti Othman All technicians and friends for giving me moral supports, cooperation and understandings

Thank You and Always Remember You All Forever

iii

ACKNOWLEDGEMENT

First of all, great praise for the Most Merciful Allah S.W.T for the blessings and strength that has given to myself in completing my PSM 1 and PSM 2 successfully.

Nothing could have been possible without the generous support from my supervisor, Dr. Intan Sharhida Binti Othman who always help me in making this project and report succeed. Without her guidance and supports, I will not be as strong as I am now. She always help me no matter what happen as for her, her student is her priority. You teach me how to be a better person with more knowledges and working experiences. Thank you for the guidance, supports and time spend and I will not forget you dear beloved Dr. Intan.

To my beloved father,Mr Badrulzaman Khan Bin Abdul Han and my sweet mother,Mrs Noraini Binti Hj Jais, thank you for your prayers. Although both of you are far apart from me, but your prayers has always give me strength and courage to complete my PSM 1 and PSM 2 successfully. Thank you for not giving up on me for the studies and always have the time for lending your ears to my problems. Thank you mama and babah. I love you.

Many thanks also to all friends that always help me in the project. To Ammar, Kak Emmy and Faizal, thank you for always being there when I need you for the guide and explanation. For me, you guys are awesome and very supportive. I will not forget all joys and happy moments that I spend with you guys, truly from my heart.

Not to forget, to all lecturers and technicians that already help me either direct or indirectly. I will always remember the deeds. THANK YOU ALL.

TABLE OF CONTENTS

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of contents	v
List of figures	ix
List of tables	xi
List of abbreviations and symbols	xii

CHAPTER 1 INTRODUCTION

1.1 Background of study	1
1.2 Problem Statement	2
1.3 Objectives of the project	4
1.4 Scope of the project	4
1.5 Important of the study	5
1.6 Thesis Outline	5

v

CHAPTER 2 LITERATURE REVIEW

2.1 Composite Coating	8
2.1.1 Introduction	8-
2.1.2 Types of composite coating	9
2.1.2.1 Ceramic Matrix Composite Coating	9
2.1.2.2 Polymer Matrix Composite Coating	10
2.1.2.3 Metal Matrix Composite Coating	10
2.2 Electrodeposition of Nickel Coating	11
2.2.1 Introduction	11
2.2.2 Fundamental of Electrodeposition Nickel Composite Coating	12
2.2.3 Functions of constituent in Watt's bath	13
2.2.3.1 Nickel sulphate	13
2.2.3.2 Chloride ion	14
2.2.3.3 Boric acid	14
2.2.4 Nickel Composite Coating	15
2.2.5 Properties of Nickel Composite Coating	15
2.2.5.1 Hardness	16
2.2.5.2 Wear Resistance	17
2.3 Aluminium and its alloy	17
2.3.1 Introduction	17
2.3.2 Types of Al alloy	18
2.3.3 Al 7075 alloy	19
2.3.4 Corrosion of Al	29
2.4 Fly Ash	20

2.4.1 Introduction	20
2.5 Quarry Dust	21
2.5.1 Introduction	22
2.6 Surfactant and types	24

CHAPTER 3 METHODOLOGY

3.1 Introduction	26
3.2 Experimental Procedures	26
3.3 Aluminium substrate preparation	28
3.3.1 Sample cutting	28
3.3.2 Mechanical pre-treatment	28
3.4 Surface pre-treatment	29
3.4.1 Cleaning with alkaline	29
3.4.2 Cleaning with acid	29
3.4.3 Pre-treatment of zincating	29
3.5 Electrodeposition	
3.5.1 Theory of electrodeposition	30
3.5.2 Fundamental of electrodeposition	31
3.6 Material Characterization	33
3.6.1 Scanning Electron Microscopy (SEM)	33
3.6.2X-ray Diffraction (XRD)	33
3.6.3X-ray Fluorescense (XRF)	34
3.7 Mechanical Testing	34
3.7.1 Particle Size Analyzer (PSA)	35

3.7.2 Wear Test	35
3.7.3 Hardness Test	36

CHAPTER 4 RESULT AND DISCUSSIONS

4.1 Characterization of quarry dust particle size	38
4.1.1 X-ray Fluorescense (XRF)	38
4.1.2 Particle Size Analyzer (PSA)	40
4.1.3 Ni-QD Composite Coating Characterization	41
4.1.3.1 Surface Roughness	41
4.1.3.2 X-ray Diffraction (XRD)	43
4.1.3.3 Scanning Electron Microscopy (SEM)	44
4.2 Mechanical Testing	48
4.2.1 Vickers Microhardness Test	48
4.2.2 Surface morphology on wear track of Ni-QD composite coating	51

CHAPTER 5 CONCLUSIONS, SUSTAINABILITY, RECOMMENDATIONS

5.1 Conclusion	57
5.2 Sustainability	58
5.3 Recommendations	59

REFERENCES 60

APPENDICES

- A Gantt Chart FYP 1
- B Gantt Chart FYP 2

LIST OF FIGURES

2.1 Basic illustration of composite coating	8
2.2 Appearance of nickel sulphate salt	14
2.3 Structural of boric acid	15
2.4 Hardness of nickel composite coating	16
2.5 Various wear rate of coating with volume fraction under sliding velocity	17
2.6 Micrograph of SEM for fly-ash	21
2.7 Image of quarry dust	22
3.1 Flowchart of the research activities	27
3.2 AA7075 sample dimension	28
3.3 Glass cell	31
3.4 Electrodeposition process	31
3.5 X-ray Diffraction	34
3.6 Particle Size Analyzer	35
3.7 Ball-on-disc wear machine	36
3.8 Microhardness Vickers machine	37

4.1	PSA reading of QD particles using shieve shacker	40
4.2	Surface roughness of Ni-QD composite coating with various surfactant	42
con	tents	
4.3	Surface roughness of Ni-QD composite coating with various heat treatment	43
4.4	XRD patterns of electrodeposited pure Ni and Ni-QD composite coating	44
4.5	SEM micrograph of Ni-QD with 100 magnification produced	46
	at various surfactant contents	
4.6	SEM micrograph of Ni-QD with 100 magnification produced	47
	at various heat treatment	
4.7	Microhardness of Ni-QD composite coating at room temperature	49
4.8	Microhardness of Ni -QD composite coating at 200°C	50
4.9	Microhardness of Ni-QD composite coating at 400°C	51
4.10	OSEM micrograph of Ni-QD composite coating at 30 magnification	52
onv	wear track of various surfactant content and heat treatment	
4.1	1 SEM micrograph of Ni-QD composite coating at 100 magnification	53
On	wear track of various surfactant content and heat treatment	
4.12	2 COF value of various SDS contents	55
4.13	3 COF value of various heat treatment	56

C Universiti Teknikal Malaysia Melaka

х

LIST OF TABLES

2.1	Properties of Nickel	11
2.2	Comparison of physical properties of quarry dust and natural sand	22
2.3	Comparison of chemical composition of quarry dust and natural sand	23
2.4	Comparison of journals	24
3.1	Composition of Watt's bath	32
3.2	Plating Condition	32
4.1	Composition of Ni-QD by XRF	39
4.2	Electrodeposited of Ni-QD composite coating AA7075 at various	41
	surfactant contents and heat treatment	

LIST OF ABBREVIATION, SYMBOLS AND NOMENCLATURE

%	-	Percent
wt%	-	Weight percent
°C	-	Degree Celcius
A/dm^2	-	Ampere per decimetre squared
AA7075	-	Aluminium Alloy 7075
Al	-	Aluminium
Al-Ni	-	Alumimium Nickel
AlCl3	-	Aluminium Chloride
Al2O3	-	Aluminium Oxide
CaO	-	Calcium Oxide
CaF ₂	-	Calcium Fluoride
CO ₂	-	Carbon dioxide
CoF	-	Coefficient of friction
Cu	-	Copper

Cr ₂ O ₃	-	Chromium(III) Oxide
DC	-	Directional Cast
FA	-	Fly Ash
Fe	-	Ferum
Fe ₂ O ₃	-	Ferum Oxide
H3BO3	-	Boric acid
H2O	-	Water
K2O	-	Potassium Oxide
Mg	-	Magnesium
MgO	-	Magnesium Oxide
MMC	-	Metal Matrix Composite
Na2O	-	Sodium Oxide
Ni	-	Nickel
Ni-FA	-	Nickel Fly Ash
Ni-QD		Nickel Quarry Dust
NiCl2	-	Nickel chloride
NiSO4	-	Nickel sulphate
РМС	-	Polymer Matrix Composite
PSA	-	Particle Size Analyzer
QD	-	Quarry dust
SCC	-	Stress Corrosion Cracking
SECD	-	Sediment Electro-co-deposition
SEM	-	Scanning Electron Microscopy
S3N4	-	Silicon Nitride

xiii

C Universiti Teknikal Malaysia Melaka

Si	-		Silica
SiO ₃	-		Silica Oxide
TiO2		-	Titanium Oxide
XRD	-		X-ray Diffraction
XRF	-		X-ray Fluorescence
Zn	-		Zinc
ZnO	-		Zinc oxide

CHAPTER 1

INTRODUCTION

1.1 Background Of Study

A coating is a process for covering that is applied to the surface of an object or substrate. Coatings are principally connected on surfaces for embellishing, defensive, or functional purposes. There are several uses of coating. Firstly, for mechanical applications where mating parts move against each other under high loads, for example, shaft/bushing sets, the mating surfaces of each will commonly be covered or treated to increase and improve the hardness of the mating surfaces, subsequently enhancing wear protection. These sorts of parts can be profoundly helpless to surface wear and surface harm. On the off chance that left unchecked, this can result to a failure of the material because of breaks that start at the surfaces of the mating parts.

Electrodeposition is used as it is high energy efficiency, ability to coat component with irregular shape and larger component can be scale-up. The properties of material can be improved or enhanced from times to times. Zincating is an important step in electrodepositing process. This is because the process will chemically evacuate the oxide layer and at the same time replace it with layer of zinc oxide.

Nickel is a compound component denoted as Ni. Its atomic number is 28. It is a silvery white brilliant metal. Nickel has a place with the transition metals and is hard and bendable. Nickel contain materials that play important role part in our regular day

to day existences. Examples of Ni applications are hardware for food preparation, cell phones, transportation, buildings, medical equipment and power generation or production. Ni is chosen due to better corrosion protection, better durability and better quality at high and low temperatures.

Quarry dust, is a by-product created from a crushing process of stone. Rock will be crushed to small size of rocks and dust type particles called quarry dust will be formed during the process of exploding which is going to be as a waste. In order to reduce and avoid the production of waste, quarry dust is used as a reinforcement material in the coating process due to its good properties to make the coating more stronger and high wear resistance. Therefore, this study is conducted to study the properties of Ni-QD composite coating on the hardness of the coating.

1.2 Problem Statement

When the material is in a bare condition, it easily get corrodes and the wear resistance also lower. It is because there is no other layer that protect the surface of the material. Thus, coating play an important role as coating gives many advantages towards the material. Although coating gives more advantages but the properties can be enhanced by adding a reinforcement material. Properties of reinforced metal-matrix can be modified or enhanced by the addition of hard oxides such as silica and alumina. Addition of these second phase particle can increase the wear resistance or in other word to reduce the friction. Previously, one way to protect the substrate or material is by preparing the pure metal coating. However, the strength and wear resistance still weaker. Thus, some improvement can be made by preparing Ni coating with addition of quarry dust. Thus, addition of quarry dust as a reinforcement will improve the properties of the coating. For example, AA7075 has a low corrosion resistance and hardness. By applying Ni-QD composite coating, the properties of composite coating can be improved.

Previous study was conducted on the influence of different proportion of sand with quarry dust on the properties of concrete. The fly-ash was used as reinforced material. However, there is no study conducted by using quarry dust. The utilization of fly ash has positive ecological effects, as it saves landfill space, reduce energy and water utilization, and diminishes greenhouse gasses. So, a new method is proposed by replacing the fly ash with a quarry dust as it has similar role with the fly ash. Quarry dust is a product that releases from the blasting process of stones. So, a new approach by testing a quarry dust as the reinforcement material is carry out. This study focused on the effects of surfactant content towards the Ni-Quarry Dust. This is to reduce the waste that produced from the process of crushing the stones. Waste can cause environmental pollution and affects life. Next, natural resources can be used in a proper way without harm and disposed in landfills. Besides, to save the cost of usage.

By the utilization of quarry dust, the need of land fill area can be reduced and avoided thus tackle the issue of natural insufficiency. The accessibility of sand in concrete is not suitable and need to find an option material to replace it. Thus, quarry dust fulfills the explanation for the required material as it can be a substitution for sand requiring lower cost. It even makes a burden for dump the crusher at one place which can causes natural contamination. Recent researches study and investigate about the quarry dust as a replacement for fly ash for the enhancement of coating properties in term of tribological properties.

The project is carry out by several steps which includes the electrodeposition process. Electrodeposition is used as it is high energy efficiency, ability to coat component with irregular shape and larger component can be scale-up. The coating consists of two different electrodes which are anode and cathode. Nickel is at the anode and AA7075 acts as a cathode. Quarry dust will be added into the Watt's Bath solution. Surfactant (Sodium Dodecyl Sulfate) will be added into the solution as it will help the deposition of the quarry dust and nickel towards the coating area at AA7075. The properties of material can be improved or enhance from times to times as new approach or research will be tested based on the nickel-quarry dust composite coating on the AA 7075 with various surfactant contents which may lead to more economical, safe and better tribological properties and corrosion resistance. Previous research about the presence and absence of surfactant has been studied. It says that the

presence of the surfactant has significant effect on the surface morphology, composition of the coating and the mechanical properties.

1.3 Objectives of the project

There are several objectives of this research. The objectives are :

- 1. To study the effect of various surfactant contents on the surface morphology, hardness and wear properties of Ni-Quarry dust composite coating
- 2. To examine the effect of various surfactant contents on the hardness and wear properties of Ni-Quarry dust composite coating
- 3. To investigate the effect of various heat treatment on the surface morphology, hardness and wear properties of Ni-Quarry dust composite coating

1.4 Scope of the project

To ensure the objectives above can be achieve successfully, there are several elements that need to be followed and concerned as well.

1. This project is mainly focused on the enhancement and improvement in tribological of coating material with the presence of reinforcement material in term of wear resistant and corrosion resistant