DESIGN A NON-ELECTRICAL TABLE FAN

NOR AYU BINTI MOHAMAD NORANI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN A NON-ELECTRICAL TABLE FAN

NOR AYU BINTI MOHAMAD NORANI

A report submitted in fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this report entitled "Design A Non-Electrical Table Fan" is the result of my own work except as cited in the references

Signature	:
Name	:
Date	:

APPROVAL

I hereby declare that I have read this project and in my opinion this report is sufficient in terms of scope and quality for award of the degree of Bachelor of Mechanical Engineering

Signature	·
Supervisor's Name	:
Date	·

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved father, Mohamad Norani bin Mansor and my mother, Normah binti Abu Bakar

ABSTRACT

The title of this project is to design a non-electrical table fan. Through this research, the electricity consumption can be reduced. Thus, this product will be user-friendly. Indirectly, this is because it can be carried anywhere without the use of energy source to turn on the fan. Through this design, the consumption of energy sources can be reduced as well levels of Carbon Dioxide be as high also controlled. can After explain in detail about literature review that was that. this report studied by researcher in previous years. Apart from that this report comment on methods used in designing non-electrical table fan. The software used to design the product is CATIA P3 V5R20. On the other hand, 'Finite Element Analysis' (FEA) are used to analyse the critical part so that safety factor can be identified. In this report, product simulation was done by using DMU Kinematics. The purpose of this simulation is to give an overview operation to users before buying. In the end of study, the manufacture of non-electrical table fan will be considered in future.

ABSTRAK

Tajuk projek ini adalah untuk mereka bentuk kipas meja bukan elektrik. Melalui penyelidikan ini, penggunaan elektrik boleh dikurangkan maka produk ini akan mesra pengguna. Secara tidak langsung, ini kerana ia dapat dipikul di mana saja tanpa penggunaan sumber tenaga memasang kipas. Melalui reka bentuk ini, penggunaan sumber-sumber tenaga boleh dikurangkan serta tahap Karbon Dioksida juga boleh dikawal. Selepas itu, laporan ini menerangkan tentang kajian ilmiah yang telah dikaji oleh pengkaji pada masa dahulu. Selain itu pula, di dalam laporan ini mengulas tentang kaedah-kaedah yang digunakan dalam mereka bentuk kipas meja bukan elektrik. Antaranya ialah dengan menggunakan CATIA P3 V5R20. Pada bahagian analisis pula, 'Finite Element Analysis' (FEA) digunakan pada bahagian kritikal untuk mengetahui faktor keselamatan telah dikenakan. Di dalam laporan ini, simulasi produk telah dilakukan dengan menggunakan center ini, simulasi produk telah dilakukan dengan menggunakan terta membeli. Di akhir kajian ini, kipas meja bukan elektrik yang terbaik akan dipertimbangkan untuk dihasilkan pada masa akan datang.

ACKNOWLEDGEMENTS

Alhamdulillah, thanks to Allah S.W.T for giving me life and allowed me to complete this project on time. In this opportunity, I would like to express my deep gratitude to my parents that always pray for my smooth journey to be an engineer. A lot of thanks to my supervisor, Dr. Mohd Asri bin Yusuff for giving me space to grow intellectually. He continually and convincingly gives me the courage and supports beyond my imagination. He doesn't limit my creativity and asked me to be free with my decision making and work. I also want to express my deepest gratitude to the panels involve with my PSM project.

Last but not least, I would like to express my thanks to all of the my members that always motivate me for giving good cooperation in comment, opinion, and supports directly or indirectly to the very end.

TABLE OF CONTENT

CHAPTER		PAGE
	DECLACRATION	
	APPROVAL	
	DEDICATION	
	ABSTRACT	i
	ABSTRAK	ii
	ACKNOWLEDGEMENT	iii
	TABLE OF CONTENT	iv
	LIST OF TABLES	x xii xv
	LIST OF FIGURES	
	LIST OF ABBEREVATIONS	
	LIST OF SYMBOL	xvi
CHAPTER 1	INTRODUCTION	1
	1.0 Introduction	1
	1.1 Project History	1
	1.2 Problem Statement	2
	1.3 Objectives	3
	1.4 Scope	3
CHAPTER 2	LITERATURE REVIEW	4
	2.0 Literature Review	4

2.1 Establishment of Table Fan 4

	2.2 Type of Table Fan	5
	2.2.1 Electric fan	5
	2.2.2 Portable non-rechargeable battery fan	10
	2.2.3 Portable rechargeable battery fan	10
	2.2.4 Office table solar-DC powered fan	11
	2.2.5 USB table fan	12
2.3	Table Fan Components	12
	2.3.1 Stand and base	13
	2.3.2 Type of blade	13
	2.3.3 Motor	15
	2.3.4 Motor body	16
	2.3.5 Guard	16
	2.3.6 Bearing	16
	2.3.7 Oscillating Knob	16
	2.3.8 Regulator	17
2.4	Factor of Performance	17
	2.4.1 Airfoil fan blades	17
	2.4.2 Blade pitch	18
	2.4.3 Airflow profile	18
	2.4.4 Blade materials	19
	2.4.5 Factor of Safety	19
	2.4.6 Rotational Speed of Blade	20
2.5	Mechanical Mechanism	20
	2.5.1 Flywheels	20

2.5.2 Music Box Ornament	22
2.5.3 Stirling Engine	24
2.5.4 Perpetual motion	27

CHAPTER 3	MET	THODOLOGY	30
	3.0	Methodology	30
	3.1	Design Process Flowchart	30
	3.2	Gantt Chart	32
	3.3	Data Collection	34
		3.3.1 Observation	34
		3.3.2 Survey	34
		3.3.3 Internet	34
		3.3.4 Article	35
		3.3.5 Journal	35
	3.4	Morphological Chart	35
	3.5	Design Concept	35
	3.6	Concept Evaluation	35
	3.7	Parametric Design	36
	3.8	Product Illustration	36
		3.8.1 Part Drawing	36
		3.8.2 Assembly Drawing	37
		3.8.3 Design Simulation	37

CHAPTER 4	RES	SULT AND DISCUSSION	38
	4.0	Result and Discussion	38
	4.1	Data Collection	38
		4.1.1 Observation	38
		4.1.2 Survey and analysis	40
		4.1.2.1 Survey Data Collections	40
		4.1.2.2 Summary survey	51
	4.2	House of Quality	52
	4.3	Product Design Specification (PDS)	53
	4.4	Morphological Chart	54
	4.5	Design Concept	57
		4.5.1 First Design Concept	57
		4.5.2 Second Design Concept	58
		4.5.3 Third Design Concept	58
		4.5.4 Fourth Design Concept	59
		4.5.5 Fifth Design Concept	60
		4.5.6 Sixth Design Concept	61
	4.6	Pugh Method	62
	4.7	Design Concept Selection	63
	4.8	Product Illustration	65
	4.9	Complete Design	66
	4.10	Materials Selection	68
		4.10.1 Plastics	70

	4.10.1.1 Acrylonitrile Styrene Acrylate (ASA) Blend	70
	4.10.1.2 Acrylonitrile Styrene (AS) Plastics	71
	4.10.2 Magnet	71
	4.10.3 Iron	71
	4.10.4 Hardened Carbon Steel Alloy	72
	4.10.5 Chrome Silicon	72
	4.11 Product Structure	72
	4.11.1 Framing Fan Body	73
	4.11.2 Fan Blade	75
	4.11.3 Blade Shaft	75
	4.11.4 Push Button Mechanism	77
	4.12 Product Analysis	78
	4.12.1 Spring	78
	4.12.2 Bearing Shaft	79
	4.12.3 Base Fan	80
	4.12.4 Bearing	81
	4.12.5 Blade	82
	4.13 Product Simulation	83
	4.13.1 Final Design	83
CHAPTER 5	CONCLUSION AND RECOMMENDATION	84

5.0	Conclusion and Recommendation	84
5.1	Conclusion	84

5.2 Recommendation	85
DEFEDENCES	97
REFERENCES	80
APPENDIX	88

ix

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Type of electric fans and it functions	7
2.2	Typical characteristics of flywheels	21
2.3	The four phases of alpha string engine	25
2.4	Four phases of beta stirling engine	26
3.1	Schedule for completion of PSM I	32
3.2	Schedule for completion of PSM II	33
4.1	Analysis of question 1	40
4.2	Analysis of question 2	41
4.3	Analysis of question 3	42
4.4	Analysis of question 4	43
4.5	Analysis of question 5	44
4.6	Analysis of question 6	45
4.7	Analysis of question 7	46
4.8	Analysis of question 8	47
4.9	Analysis of question 9	48
4.10	Analysis of question 10	49

4.11	Analysis question 11	50
4.12	Analysis of question 12	50
4.13	Analysis of question 13	51
4.14	List of Product Design Specification (PDS)	54
4.15	Morphological chart	56
4.16	Pugh method	63
4.17	Materials selection for design product	69
4.19	Density, tensile strength and modulus of elasticity of AS Plastic	71
4.19	Technical specification of Chrome Silicon	72
4.20	Specifications of bearing HK1616	81

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	An old fan with a heavy larger motor	6
2.2	Mini Handy Fan	10
2.3	Portable rechargeable fan	11
2.4	The table fan system setup	11
2.5	USB table fan	12
2.6	Assembly of table fan	13
2.7	Sectional view of blade profile	14
2.8	Radial fan blower wheel with forwards and backwards curved blades	15
2.9	The modification mechanism at table fan	17
2.10	Airflow profile	19
2.11	Top and side view of flywheel mechanism	22
2.13	A music box recorded by Borgnis, a) drawing, b) structural block diagram, c) mechanism sketch	24
2.14	Bhaskaracharya's perpetual motion mechanism	27
2.15	Arabian Perpetuum Mobile	28
2.16	Bicycle chain	28
2.17	Perpetual wheel, Patented in 1923	29
3.1	Flowchart of the general methodology	31

4.1	People cooling down their body	39
4.2	Percentage of question 1	41
4.3	Percentage of question 2	42
4.4	Percentage of question 3	43
4.5	Percentage of question 4	44
4.6	Percentage of question 5	45
4.7	Percentage of question 6	46
4.8	Percentage of question 8	48
4.9	Percentage of question 10	49
4.10	Percentage of question 11	50
4.11	Analysis of question 13	51
4.12	House of quality	53
4.13	First design concept	57
4.14	Second design concept	58
4.15	Third design concept	59
4.16	Fourth design concept	60
4.17	Fifth design concept	61
4.18	Sixth design concept	62
4.19	Selection of design concept	64
4.20	Push button (groove profile)	64
4.21	Magnet and gravity perpetual motion	64
4.22	Product illustration by using CATIA V5R20 software	65
4.23	Orthographic view of the product by using CATIA V5R20	65
4.24	Assemble vie of Non-Electrical Table Fan	66

4.25	Orthographic view of Non-Electrical Table Fan	67
4.26	Exploded view of Non-Electrical Table Fan	68
4.27	Framing fan body structure	74
4.28	Fan blade structure	75
4.29	Blade shaft structure	76
4.30	Push button mechanism structure	77
4.31	Spring result analysis from left side: Von Mises Stress, Destruction and Translational Displacement	78
4.32	Bearing shaft result analysis, from left side: Deformation, Translational Displacement and Von Mises Stress	80
4.33	Base fan result analysis, from left side: Deformation, Translational Displacement and Von Mises Stress	81
4.34	The volume, area, mass, density and moment of inertia of the blade fan	82
4.35	The final product	83

xiv

LIST OF ABBEREVATIONS

PSM	Projek Sarjana Muda
CAD	Computer Aided Design
CATIA V5R20	CATIA Version 5 Revision 20
DC	Direct Current
USB	Universal Serial Bus
EMF	Electromagnetic Flux
LSF	Low-Speed Flywheels
HSF	High-Speed Flywheel
micro-HSF	Micro-High-Speed Flywheel
RPM	Revolution Per Minute
FEA	Finite Element Analysis
2D	Two Dimension
3D	Three Dimension
BOM	Bill Of Material
DMU	Digital Mock-Ups
UTeM	Universiti Teknikal Malaysia Melaka
PDS	Product Design Specification

LIST OF SYMBOL

- ω Rotational speed of fan
- *g* The acceleration due to gravitional force
- *l* The length of the string
- *r* The radius at which string connect to the blade
- θ The angle of the string with the vertical

CHAPTER 1

INTRODUCTION

1.0 Introduction

The final year project as known as a Projek Sarjana Muda (PSM) is an individual project research related to mechanical engineering. The main purpose of this PSM is to apply the basic of science, mathematics and mechanical engineering. Additionally, this project provides exposure to product design and simulation to complement project objectives. This chapter explains the introduction of importance, objectives, scope, problem statement, and summary of project reports. All of these will be debated in the subtopic of this chapter.

The title of this project is to design a non-electrical table fan. Through this research, the electricity consumption can be reduced thus, this product will be user-friendly. Indirectly, this is because it can be carried anywhere without the use of energy source to turn on the fan. Through this design, the consumption of energy sources can be reduced as well as high levels of Carbon Dioxide can also be controlled.

1.1 Project History

Malaysia located near the equator line, being hot and humid throughout the year. So in this condition, people usually feel uncomfortable in a hot environment. Hence, the use of table fan is recommended to become one of the cooling agent product. This is because fan used to create a flow of the air. One of the advantages using this table fan is, it can be carried anywhere but has a limitation on the usage of electrical power. Therefore, the fan industry needs a positive transformation that can facilitate user to use table fan in various places. Thus, the existing electrical mechanism in table fan motor needs to be modified so that it no longer use electricity. The mechanism that can be replaced with another mechanical mechanism. However to design a new mechanism needs more research in order to have a good result. So, the focus study in this project is to design a non-electrical table fan mechanism to replace the electric motor in a table fan.

1.2 Problem Statement

In a real world nowadays, most of the advanced technology industry requires a high electricity demand to run their production. It is good to produce goods, but the long-term impact of using high electricity can cause greenhouse effect leads to change of global climate. According to F. Anas Alam (2016), the haze that hit Malaysia in almost every year following El-Nino is the highlight of the global climate. Therefore in order to prevent this thing happen again, Malaysia is currently undertaking steps to reduce electrical energy consumption by replacing to renewable energy. The other way to use less energy is also by having a mechanical mechanism where it only has a mechanical part to move this product.

In addition, the problem of a traveler to use an electrical source during travel is limited. As Malaysia located near the equator line, being hot and humid throughout the year. The traveler who joint outdoor activities in Malaysia need to use portable table fan to comfort themselves. This is because portable table fan can be carried anywhere but there has limitation use on battery. The absence of electricity resource whenever going picnic or backpack in a long period becomes a problem to the users because of unable use table fan when sort of battery needed since it requires a power supply. Unfortunately, this table fan has a limitation on the usage of electrical power. This situation makes difficult to a user.

Therefore based on the problem above, one of the solutions had been made is to design a non-electrical table fan mechanism. This mechanism in table fan motor needs modified and replaced with other mechanical mechanisms so that it no longer use electricity.

1.3 Objectives

The objectives of this project are to:

- 1) Design a non-electrical table fan mechanism
- 2) Produce product design capable of penetrating the current market.

1.4 Scope

The priority of this project is the design of a mechanism of production that does not require the power source to move the desk fan blade. This product design and analysis uses Computer Aided Design (CAD) software, CATIA V5R20. However, this study does not cover angina from outside sources.

- 1) Collect to all information related to the table fan.
- 2) Design mechanism that allows the fan blade to move without using electrical energy.
- Design and analyze mechanisms using Computer Aided Design (CAD) software and analytics software.
- 4) Simulation movement of table fan mechanism.