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ABSTRACT 

 

 

Nowadays, with increasing awareness to protect the environment, the use of lead-based solder 
for electronic components interconnection in printed circuit board (PCB) are gradually replaced 
by the lead-free electrically conducive adhesive (ECA) in microelectronic industry. As 
interconnect materials, the mechanical strength of ECA is another aspect to be improvised in 
addition to the electrical conductive performance. This research project investigates the effect 
of substrate surface treatment in terms of the surface roughness and surface wettability which 
contributed to shear strength of multi-walled carbon nanotube (MWCNT) filled ECA bonded to 
aluminium-aluminium substrate, and the effect of varying MWCNT filler loading on ECA 
mechanical and electrical properties. Surface roughness is measured using a stylus profilometer 
and the contact angle test is conducted to measure aluminium substrate surface wettability. The 
result of four-point probe test reveals that the sheet resistance of the ECA decreased with an 
increase in the MWCNT filler loading from 5 wt.% to 7 wt.%, due to enhanced formation of 
percolated linkages between MWCNT particles. Surface treated, and untreated aluminium 
substrate were used as substrate for single-lap shear adhesively bonded experiment. The surface 
treatments consist of grinding with silicone carbide (SiC) abrasive paper grit 180 and 
alkaline/acidic etching. The mechanical properties of ECA bonded to as-received and 
chemically etched aluminium substrates show an increase in shear strength with an increase 
MWCNT filler loading from 5 wt.% to 6 wt.% and decrease in shear strength with an increase 
of MWCNT filler loading from 6 wt.% to 7 wt.%. Higher shear strength is obtained when the 
ECA experience an adhesive-cohesive failure as compared to the adhesively failed ECA. The 
surface morphology study on fractured surface of ECA following lap shear test reveals high 
density of hollow structures/voids on the entire surface of ECA with 7 wt.% MWCNT filler 
loading, possibly due to agglomeration of MWCNT in the composites, which results in poorer 
mechanical properties. Overall, the alkaline/acidic etched aluminium substrate exhibit the 
highest surface roughness and the highest wettability as compared to other surface conditions 
which results in largest effective bond area between ECA/substrate interface, hence, highest 
shear strength of the ECA is obtained. Meanwhile, the grinded aluminium substrate with SiC 
abrasive paper grit 180 has the lowest wettability and slightly higher surface roughness than as-
received aluminium substrate which yield to the lowest shear strength of the ECA. This is due 
to low degree of wettability of grinded aluminium substrate which yield in the low effective 
bond area, results in an insufficient anchoring of ECA towards the substrate surface.  
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ABSTRAK 

 

 

Pada masa kini, peningkatan kesedaran terhadap penjagaan alam sekitar telah menyebabkan 
penggunaan pateri berasaskan plumbum untuk penyambungan antara komponen-komponen 
elektronik pada “printed circuit board” (PCB) telah digantikan secara berperingkat kepada 
“electrically conductive adhesive” (ECA) yang bebas plumbum dalam industri mikroelektronik. 
Sebagai bahan penyambung antara komponen elektronik, kekuatan mekanikal ECA perlu 
ditingkatkan selain daripada keupayaan mengalirkan elektrik. Projek penyelidikan ini 
dijalankan untuk mengkaji kesan rawatan permukaan terhadap kekasaran dan kebolehbasahan 
permukaan yang memberi kesan terhadap kekuatan ricih ECA komposit yang mengandungi 
“multi-walled carbon nanotube” (MWCNT) apabila disambungkan pada dua permukaan 
substrat aluminium, dan kesan perbezaan kandungan MWCNT terhadap sifat mekanikal dan 
elektrikal ECA. Stylus profilometer digunakan bagi mengukur kekasaran permukaan dan ujian 
sudut sentuhan dijalankan bagi menguji kebolehbasahan permukaan substrat aluminium. 
Keputusan ujian empat titik pemeriksaan menunjukkan rintangan lembaran pada ECA 
mencatatkan penurunan dengan peningkatan kandungan MWCNT daripada 5 wt.% kepada 7 
wt.%. yang disebabkan oleh peningkatan hubungan dan sentuhan antara partikel MWCNT. 
Substrat aluminium yang dirawat dan tidak dirawat digunakan untuk ujian tegangan ricih pada 
dua permukaan aluminium yang dilekatkan. Rawatan permukaan terdiri daripada dua teknik 
iaitu mencanai dengan menggunakan kertas pengikis “silicon carbide” (SiC) grit 180 dan 
hakisan alkali/asid pada permukaan substrat aluminium. Kekuatan ricih ECA yang 
disambungkan pada aluminium substrat yang tidak dirawat dan yang dirawat dengan hakisan 
kimia meningkat dengan peningkatan kandungan MWCNT daripada 5 wt.% kepada 6 wt.% dan 
kekuatan ricih ECA menurun dengan peningkatan kandungan MWCNT daripada 6 wt.% kepada 
7 wt.%. ECA yang gagal dengan lekatan-kohesif menunjukkan kekuatan ricih yang lebih tinggi 
berbanding ECA yang gagal pada lekatan. Kajian morfologi terhadap permukaan ECA dengan 
7 wt.% kandungan MWCNT yang gagal setelah dikenakan tegangan ricih menunjukkan 
permukaan yang padat dengan struktur berlubang yang mungkin disebabkan berlakunya 
timbunan MWCNT, seterusnya mengurangkan kemampuan lekatan pada substrat. Secara 
keseluruhan, aluminium substrat yang dikenakan rawatan hakisan alkali/asid mempunyai 
kebolehbasahan dan kekasaran permukaan yang tertinggi berbanding permukaan substrat yang 
lain, seterusnya menyumbang kepada permukaan efektif pada sambungan yang terluas antara 
permukaan ECA/substrat, justeru, kekuatan ricih yang tertinggi pada ECA tercapai. Sementara 
itu, permukaan aluminium yang dicanai dengan kertas pengikis SiC grit 180 mempunyai 
kebolehbasahan permukaan yang terendah dan kekasaran permukaan lebih sedikit berbanding 
permukaan substrat aluminium yang tidak dirawat, seterusnya menyumbang kepada kekuatan 
ricih yang terendah pada ECA. Hal ini disebabkan oleh kebolehbasahan permukaan yang 
rendah menyebabkan permukaan efektif pada sambungan menjadi rendah, seterusnya 
menyebabkan pautan tidak mencukupi oleh ECA untuk melekat pada permukaan substrat.  
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Background 

Electrically conductive adhesives (ECAs) are basically made up from combination of 

adhesives such as epoxy-resin and metallic or carbon conductive filler. The contact between 

substrate and ECA allow current flow through them which conductive fillers, allowing electron 

movement by their contact between their suspended particles in the adhesives (Yi, Daniel, & 

C.P., 2010). High volume of conductive filler in ECA will give good electrical conductivity but 

will reduce the mechanical strength of the ECA and vice versa (H. P. Wu et al., 2007). There 

are few advantages of using ECA as compared to lead-based solder for electronic component 

interconnection, the adhesives are lead-free, less and simple processing steps which reduce 

production cost, and finer pitch due to the small particles of filler (Mantena, 2009). 

ECA is divided into two types which are isotopically conductive adhesive (ICA) and 

anisotropically conductive adhesive (ACA). ICA has capability to conduct electric at all 

direction while ACA able to conduct electric at single direction which normally at z-axis. 

Various kind of ICA are made up from thermosetting resin. Thermosetting resin has several 

advantages on its properties such as high adhesives strength, and high resistance to chemical 

and corrosion. Conductive filler usually used in ICAs are nickel, copper, gold and carbon with 

different size and shape. ACAs are made up from pastes or films of thermoplastic which need 

high pressure and heat during bonding process to substrate. ACAs are not electrically conductive 
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before bond to substrate as the ratio of conductive filler to adhesives is low and below the 

percolation threshold (D. D. Lu & Wong, 2009). 

In ICA, conductive pathways consist of genuine conduction and percolation. Genuine 

conduction is conduction by particle-to-particle contact in ICAs while percolation conduction 

is by dielectric breakdown of the matrix which electron is transmitted by quantum-mechanical 

electron tunnelling between nearby particles. Besides, ICA electrical conductivity performance 

also contributed by the uniform dispersion of filler particles in order to create excellent 

conductive pathway (Mantena, 2009).  

 

1.2   Problem statement 

The use of lead-based solder for electronic components interconnection in printed circuit 

board (PCB) are widely used in microelectronic industry. As the awareness to environment 

increase, the use of lead material for component interconnection is not recommended; hence a 

substitute material, that is lead-free electrically conductive adhesive (ECA) is introduced. Other 

alternative besides the ECA is lead-free solder alloys; nonetheless one of the main concern is 

on its melting temperature, which exceeds the design temperature of various types of circuit 

board (Brien, Us, & Ashmead, 2005). Moreover, compared to lead and lead-free solder, the 

processing temperature of ECA is the lowest and below the design temperature of many circuit 

board. 

ECA is typically consist of polymer matrix binder such as epoxy resin and conductive 

filler material. In the last couple of years, the carbon nanotube (CNT) has been introduced to 

replace the use of metallic material as conductive filler. The use of CNT can increase the 

performance and properties of ECA. The improvements of ECA when using CNT as a filler 

instead of metallic material are in terms of an improved strength and modulus, high thermal 
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conductivity and good thermal stability, and high capacity of current flow (Kwon, Yim, Kim, 

& Kim, 2011). 

The critical aspect in fine-pitch interconnection field is the adhesion strength of the ECA. 

This is because ECA is detrimental to shock encountered during handling, assembly and lifetime 

which require excellent adhesion bond between ECA/substrate interface. Basically, the overall 

adhesion strength of ECA is from two types of adhesion mechanisms; these being the chemical 

and physical bonding.  

Chemical bonding requires chemical reaction between polymer and substrate which 

involve the formation of ionic or covalent bonds to link between the substrate and the polymer 

while physical bonding involve mechanical interlocking between ECA/substrate interface. The 

formation of inter-diffusion layer established as the interaction of polymer molecule that is 

highly compatible with the molecules of substrate occur. Besides, the polymer is expected to 

has good adhesion strength towards the substrate with a rougher surface in which rougher 

surface provide more contact surface area between polymer/substrate interface to establish 

excellent interfacial mechanical interlocking (Yi et al., 2010). 

However, surface roughness may not establish good adhesion strength at the 

polymer/substrate interface if  the polymer does not penetrate well into the rough surface 

asperities, which results in a decrease in the effective bond area and generate stress risers at the 

interface (Boutar, Naïmi, Mezlini, & Ali, 2016). Therefore, good spreading of ECA towards the 

substrate surface is essential to promote excellent adhesion properties. 

In this research project, multi-walled carbon nanotubes (MWCNT) is used as a 

conductive filler in ECA composites to study effect of MWCNT filler loading on ECA electrical 

performance, and to study the effect of substrate surface conditions on mechanical performance 

of ECA with varying MWCNT filler loading.  


