IMPROVING THE FATIGUE LIFE OF FASTENER HOLES BY USING COLD EXPANSION TECHNIQUE

TALAL MAHMOOD OTHMAN AHMED

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IMPROVING THE FATIGUE LIFE OF FASTENER HOLES BY USING COLD EXPANSION TECHNIQUE

TALAL MAHMOOD OTHMAN AHMED

This report is submitted in fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering WithHonours

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

JUNE 2018

DECLARATION

I declare that this project report entitled "*IMPROVING THE FATIGUE LIFE OF FASTENER HOLES BY USING COLD EXPANSION TECHNIQUE*" is the result of my own work except the cited in the references.

Signatu	ure	:
Name	:	TALAL MAHMOOD OTHMAN AHMED
Date	:	

iv

SUPERVISOR'S DECLARATION

I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the award of the Degree of Bachelor of Mechanical Engineering with Honours.

Signature :-----

Name of Supervisor:PROF. MADYA ABD SALAM BIN MD TAHIR Date :-----

C Universiti Teknikal Malaysia Melaka

DEDICATION

Every time when I need them the most, They are always by my side. This humble work of mine I would like to dedicate to

> My lovely mother, My lovely father,

The kind, humble and knowledgeable lecturer who I was lucky to be guided by him.

My supervisor, PROF. MADYA ABD SALAM BIN MD TAHIR

I really appreciate your time, continues help and valuable advice.

My fiancée The girl who believes in me all the way,

And

All my friends, For their assistance& support.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Fatigue can be defined as the behavior in which the failure takes place in a material due to repetitive applications of loads subjected to that material. Fatigue constitutes a serious concern for engineers as it happens suddenly and cannot be predicted accurately. Cracks are the leading cause of the fatigue failure which happens in many engineering structures and components. Cold expansion technique is one of the techniques that has been used in the last forty years to retard the crack initiation and propagation. As a result of using this technique, the strength of material and fatigue life are improved. In this thesis, Aluminum alloy 6061 is used as the tested material. A total of 15 specimens of dog-bone shaped with centralized holeto act as the stress concentration zone are prepared based on ASTM standards to study the fatigue life before and after applying the cold expansion technique. High carbon steel is the material that was used to produce the cold expansion tools. A set of machining process need to be done in order to prepare the specimens for both tensile and fatigue tests. Three different amount of interferences, which are 1.5%, 2.2% and 2.9%, are generated to study the impact of cold expansion process. The fatigue tests are conducted by using INSTRON 8802 universal testing machine and the test is run at 0.1 stress ratio and 10 Hzresonant frequency. The results obtained from this study are shown in tables and plotted in the form of S-N curve. The findings indicated a remarkable improvement in the fatigue life when the interference is 2.2%. In contrast, there is a decrease in the fatigue life when the interferences are 1.5% and 2.9% respectively.

ABSTRAK

Lesu boleh ditakrifkan sebagai gaya laku di mana kegagalan berlaku dalam suatu bahan disebabkan aplikasi beban berulang yang dikenakan kepada sesuatu bahan. Lesu diambil pertimbangan serius oleh jurutera disebabkan ia boleh berlaku secara mengejut dan sukar diramalkan dengan tepat. Retak adalah merupakan sebab utama kegagalan lesu dimana terjadi kepada komponen dan struktur kejuruteraan. Teknik pengembangan sejuk adalah salah satu teknik yang telah digunakan sejak lebih 40 tahun lalu untuk merupakan menghalang permulaan dan perambatan retak. Sebagai kesan penggunaan teknik ini, kekuatan bahan dan hayat lesu dapat ditingkatkan. Dalam tesis ini, aluminiumaloi 6061 digunakans ebagai bahan yang diuji. Sebanyak 15 spesimen berbentuk tulang-anjing dengan lubang ditetengahnya bertindak sebagai zon konsentrasitegasan telah disediakan berdasarkan piawaian ASTM untuk mengkaji hayat lesus ebelum dan selepas teknik pengembangansejuk dilakukan. Keluliberkarbontinggiadalahbahan yang digunakanuntukmenghasilkanalatpengembangansejuk. Beberapa proses pemesinanperludilakukanuntukmenyediakanspesimenujiantegangan dan ujianlesu. 1.5%. 2.2% 2.9% Tigatahapperselisihanbersamaan dan telahdihasilkanuntukmengkajiimpak proses pengembangansejuk. 8802 Ujianlesudijalankandenganmenggunakanmesinujianumum **INSTRON** pada nisbahtegasan 0.1 dan frekuensi 10Hz. Keputusan yang didapatidarikajianiniditunjukkandalambentukjadual S-N. dan juga graf Dapatankajianmenunjukkanbahawahayatlesudapatdipertingkatkandenganketarabilaperselis ihanadalah 2.2%. Sebaliknya, terdapatpenguranganhayatlesubilaperselisihanadalahbersamaan 1.5% dan 2.9%.

ACKNOWLEDGMENT

I would like to express my deepest appreciation and thanks to my supervisor PROF. MADYA ABD SALAM BIN MD TAHIR for his help and support and for providing me with clear guidance throughout the whole academic year. Without his help I would not have got that far with my work. A lot of thanks and appreciation to the labs staff and my friends who were available during the academic year for the support they offered. Lastly I would like to thank UniversitiTeknikal Malaysia Melaka - faculty of mechanical engineering for giving overall support.

CHAPTER	CON	NTENT	PAGE
	DEC	CLARATION	iv
	SUP	ERVISOR'S APROVAL	v
	DED	DICATION	vi
	ABS	TRACT	vii
	ABS	TRAK	viii
	ACK	NOWLEDGMENT	ix
	TAB	BLE OF CONTENTS	X
	LIST	r of figures	xiii
	LIST	Γ OF TABLES	XV
	LIST	Γ OF SYMPOLS	xvi
	LIST	Γ OF ABBREVIATION	xvii
	LIST	Γ OF APPENDIX	xviii
CHAPTER 1	INT	RODUCTION	1-3
	1.1	Background	1
	1.2	Objectives	2
	1.3	Scope	2
	1.4	Problem Statement	3
CHAPTER 2	LITI	ERATURE REVIEW	4-15
	2.1	Overview	4
	2.2	Material Failure	4
		2.2.1 Static loading and cyclic loading	5
		2.2.2 Constant Amplitude cyclic loading	5
		2.2.3 Non-Constant Amplitude Cyclic Loading	7
	2.3	Fatigue	8

	2.3.1	Fatigue under cyclic loading	8
	2.3.2	Crack propagation	9
2.4	Stress	-Life Approach	11
2.5	Cold e	expansion technique	13

CHAPTER 3	METHODOLOGY	16-29
	3.1 Overview	16
	3.2 Flow Chart	16
	3.3 Test Material	18
	3.4 Material Specification	18
	3.5 Experimental Apparatus	19
	3.6 Specimens Preparation and Equipment used	21
	3.7 Tensile Test Specimen	23
	3.8Tensile Test	25
	3.8.1 Tensile Test Procedures	25
	3.9 Cold Expansion Process	26
	3.9.1 Cold Expansion Material and Preparing.	26
	3.9.2 Cold Expansion Implementation	27
	3.10 Fatigue Test	28
	3.10.1 Fatigue Test Procedures.	29
CHAPTER 4	RESULTS AND DISCUSSION	30-45
	4.1 Overview	30
	4.2 First Tensile Test	30
	4.3 Second Tensile Test	31
	4.4 ` Fatigue Test Results	35
	4.5 Analysis of Tensile Test Results	38
	4.6 Analysis Of Fatigue Test Results	39
	4.7 Factors Influencing Fatigue	42

4.7.1 Effect of Cold Expansion Technique 42

	4.7.2 Effect of Surface Condition	42
	4.8Fracture Behavior of Materials Before and after cold Expansion	43
CHAPTER 5	CONCLUSION& RECOMMENDATION	46-48
	5.1 Conclusion	46
	5.2 Recommendations for further studies	47
	REFERENCES	49
	APPENDICES	51

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

NO	TITLE P	AGE
Figure	e 2.1 Basic types of deformation and fractures	4
Figure	e 2.2 Nomenclature for constant amplitude cyclic loading	6
Figure	e 2.3 Types of constant amplitude, proportional loading.	6
Figure	e 2.4 Non-Constant Amplitude Cyclic Loading	7
Figure	e 2.5 The stages of Crack's nucleation and development	9
Figure	e 2.6 Fatigue crack propagation	10
Figure	e 2.7 Schematic S-N representation of materials having fatigue limit behav	vior11
Figure	e 2.8 The S-N curve of annealed 4340 stell with a fatigue limit 10^6 cycles	12
Figure	e 2.9 The S-N curve of aluminum alloy 7075 without any true fatigue limit	t. 12
Figure	e 2.10 Mandrel Expansion Process	13
Figure	e 2.11 Tapered Indenter Expansion Process	13
Figure	e 2.12 Ball Expasion Process	13
Figure	e 2.13Split sleeve expansion process	13
Figure	e2.14Cold expansion technique and the Idealcorresponding residual stress	
distrib	oution	14
Figure	e 3.1: Flow chart of the present project	17
Figure	e 3.2Universal Testing Machine (INSTRON8872)	20
Figure	e 3.3AA6061 Plate Cut by Water Jet Cutting Machine	22
Figure	e 3.4Dimensions of AA 6061 specimen for initial tensile test	23
Figure	e 3.5Dimensions of AA 6061 specimen for preparatory tensile test	24
Figure	e 3.6Cold Expansion pin made by CNC Turning Machine	26
Figure	e 3.7Accurate diameter measured by Dino-Lite Digital Microscope	27
Figure	e 4.1 S-N Curve for all specimens	37
Figure	e 4.2Comparison of life fatigue before and after Cold Expansion 40	

C Universiti Teknikal Malaysia Melaka

Figure 4.3 Changes of Fatigue Life Behavior	41
Figure 4.4 Macroscopic Fracture of a specimen before Cold Expansion	44
Figure 4.5 Microscopic Flat Fracture for specimen before Cold Expansion	44
Figure 4.6 Macroscopic Fracture of a specimen after cold expansion	45
Figure 4.7 Microscopic Ductile Fracture for specimen before Cold Expansion	45
Figure 4.8 Microscopic Ductile Fracture for specimen before Cold Expansion	45

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

NO	TITLE PA	GE
Table	3.1 Aluminum alloy 6061 properties	18
Table	3.2 Number of Test specimens	22
Table	3.3 Configuration of Initial Tensile Test Specimens	23
Table	3.4 Configuration of Preparatory Tensile Test Specimens	24
Table	3.5 Average diameter for each batch after the cold expansion.	28
Table	4.1 Tensile Tests Results for 3 rectangular specimens	30
Table	4.2Tensile Tests Results for 3 dog-bone specimens	31
Table	4.3 Fatigue tests results for specimens formed by tool with 6.8mm diameter	33
Table	4.4 Fatigue tests results for specimens formed by tool with 6.85mm diameter	er34
Table	4.5 Fatigue tests results for specimens formed by tool with 6.9mm diameter	35
Table	4.6 Fatigue tests results for the original specimens prior cold expansion	36
Table	4.7 Comparison of Fatigue Life before and after Cold Expansion	40

XV

LIST OF SYMBOLS

NO	TITLE
S	Stress
Ν	Number of cycles to failure
$\mathbf{S}_{\mathbf{m}}$	Mean stress
$\mathbf{S}_{\mathbf{r}}$	Stress range
Sa	Stress amplitude
S _{max}	Maximum stress
\mathbf{S}_{\min}	Minimum stress
R	Stress ratio/ Radius of fillet
$\sigma_{ m max}$	Maximum stress
$\sigma_{ m nom}$	Nominal stress
Р	Force applied
D	Diameter of test section of specimen
G	Gage length
А	Length of reduced section
Py	Yield load
P _{ult}	Ultimate tensile load
$\sigma_{ m y}$	Yield strength
$\sigma_{ m ult}$	Ultimate tensile strength
$\sigma_{ m min}$	Minimum stress
P _{max}	Maximum load
P _{min}	Minimum load
P _{mean}	Mean load
P _{amp}	Load amplitude
Nf	Fatigue life cycles

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATION

TITLE
Cold Expansion
Stress Concentration Factor
American Society for Testing and Materials
Computer Numerical Control
International Organisation for Standardisation
Aluminium
Aluminium alloy 6061
Chromium
Copper
Iron
Magnesium
Silicon
Titanium
Zinc
Manganese

LIST OF APPENDIX

NO	TITLE	PAGE
Appendix A	Gantt Chart of Final Year Project	51
Appendix B	Results of initial Tensile Test	52
Appendix C	Results of preparatory Tensile Test	53
Appendix D	Detailed drawing of dog-bone shaped specimens	54
Appendix E	DXF drawing file for Water Jet Cutting Machine	55
Appendix F	Detailed drawing of doge-bone shaped specimen	56
Appendix G	Detailed drawing of Cold Expansion Tool	57
Appendix H	Set-up Calculation for Fatigue Test	58

CHAPTER 1

INTRODUCTION

1.1 Background

Deformation and fracture are the two common responses of any material under an external force. The deformation can be elastic, plastic ,viscoelastic (time dependent elastic deformation) or creep (time dependent plastic deformation). With respect to fatigue which finally lead to failure by fracture, which is the dangerous response of the materials since it may occurs suddenly sometimes, typically happen after repeated cycles of loads and this is what is called "Fatigue". (William, M. 2009)

Each material has its static and dynamic behavior in the term of fatigue. To avoid the unpredictable failure and increase the aspect of safety, studies have been conducted to know the properties of materials and the best geometry design for each mechanical part or system. Therefore, the maximum cyclic stress that can be applied need to be known in order toavoid fatigue failure.

Fatigue, as defined by the technology of materials, is a progress in which damage takes place due to the repetitive applications of loads that may be lower than the yield strength of the specific material (David 2008). The progress of fatigue is very dangerous because one cycle of the load applied will not show any ill effects. Thus, the conventional stress analysis may conclude that safety is achieved while it is not. Generally, the fatigue in metals start at an internal or surface point where the stress is concentrated, and includes initially of shear flow along that point or slip planes. After a number of cycles, intrusions and extrusions are generated by this slip to create a crack as a result. This crack will propagate to reach its critical size which immediately end up with a fatigue failure to the mechanical part or system.

There are many methods created to improve the fatigue life. Most of them were made in the time when the initial ideas of design for metal aircraft structures did not take in consideration the advantages provided. In addition, the point of view of the initial ideas is used to deal with the potential increases as a protection. The processes initially were used to improve the life through that otherwise considered safe, or to demand it when premature cracks appeared. All these ideas are not valid anymore. Recently, the established life enhancement is used by the high-tech military aircraft during the manufacturing process. for example, in the McDonnell Douglas F-18, the aircraft which uses the technique of cold expansion for the hole, ring pad coining , shot peening and the interference-fit fastener. The need for higher performance structure with lower cost now makes it more necessary than before to quantify the life improvements and make sure that they are perfect.

In 1960s, Boeing Company developed the split-sleeve hole cold expansion. This technique has been efficiently used for more than thirty years (Houghton S.J. 2010). Split sleeve cold expansion is an effective way to overcome the problems related to fatigue holes and cracks in the metallic structures. Split sleeve expansion is conducted by pulling a tapered mandrel, pre-fitted with a lubricated split sleeve through a hole in aluminum, titanium or steel. The function of the expendable split sleeve cold expansion is to make sure of the correct radial expansion of the hole, decrease the mandrel pull force and allow uniaxial processing.

1.2 Objectives:

The main objectives of this study are

- To conduct fatigue tests and determine the S-N curve of the tested specimens of aluminum alloy 6061.
- To show clearly the benefit and impact of cold expansion technique in the term of improving the fatigue life.

The scopes involving in this study are :

- To identify the suitable materials to conduct the required technical tests for the study.
- To identify the best design for the specimen based on the previous studies and the machines available in the lab of the faculty of Mechanical Engineering.
- > To conduct the tensile and fatigue tests for the specimens.
- To develop the S-N Curves.
- To study the effects of the changes in geometry and also the effect of cold expansion technique on the specimens.
- > To show clearly all the results produced in order to improve the fatigue life.

1.4 Problem Statement

Due to the need for higher fatigue strength of the mechanical parts especially in some systems like air turbines, aircrafts and automobiles which are subjected to repeated loading and vibration, fatigue has become a serious matter need to deal with. Most of the incidences in the structures, fatigue starts from the holes or stress concentration areas, specially the fasten ones.

In this study, the emphasis is on improving and studying the fatigue life and fatigue behavior for better understanding and enhancement on fatigue life of structures through a cold expansion technique.

CHAPTER 2

LITERATURE RIVIEW

2.1 Overview

According to (Rallis 2014), the purpose of literature review is to provide a theoretical outline and foundation for the related research study. This chapter will discuss the background of this project in a general way. In addition, this chapter will show the published previous studies related to the particular subject area. Moreover, this chapter will be a summary of the sources of this project. Literature review focuses normally on specific issues of an interest and the critical analysis of the connection among different mechanisms and any information related to this project.

2.2 Material Failure

The meaning of deformation failure is the change in the physical dimensions or shape of a component that is sufficient for its function to be lost or impaired (Dowling, N.E., 2013). Deformation failure in materials can be occurred in two basic types which are deformation and fracture. Because of the different causes to these types of failure, it is very important to identify correctly the main reason and determine the compatible analysis method in order to find the suitable solution for the problem. Basic types of deformation and fractures are shown in figure 2.1.

Figure 2.1 : Basic types of deformation and fractures

(C) Universiti Teknikal Malaysia Melaka

2.2.1 Static loading and cyclic loading

It is important to differentiate between cyclic loading and static loading. Static loading is normally related to the static fatigue especially in the brittle solids such as ceramics and glasses. Usually this kind of fatigue happened due to the moisture in these materials which cause cracks to grow. Thus, static fatigue is a corrosion response not like the fatigue in this present project which happens due to the cyclic (repeated) loading's effects in the fastener holes where stress concentration factor is located. Cyclic loading affects badly the mechanical structures and components. Over the time, the cracks start to grow and failure occurs as a result.

In general, there are two kind of cyclic loading which are constant amplitude loading and non-constant amplitude loading. (Meyers, M. ,&Chawla, K. K. 2008).

2.2.2Constant Amplitude cyclic loading

This kind of cyclic loading includes constant values of maximum and minimum stresses. It is used to find and study the behavior of the material fatigue. There are some important parameters we should know about constant amplitude cyclic loading which are (Bargiggia.U.,2008) :

- Stress Ratio, R : the ratio of the minimum stress to maximum stress in each cycle.

$$R = \frac{Smin}{Smax}$$

- Stress Range, Sr : the algebraic difference between the maximum stress and the minimum stress in each cycle.

$$Sr = Smax - Smin$$

- Stress Amplitude : the half of Stress Range.

$$Sa = \frac{Smax - Smin}{2}$$

-Mean Stress : the average of the maximum and minimum stresses in one cycle.

$$Sm = \frac{Smax+Smin}{2}$$

Figure 2.2: Nomenclature for constant amplitude cyclic loading(Stephens, R.I. et al., 2001)

Constant Amplitude loading involves three main types which are,

- 1- Tensile-to-Tensile Load. (Figure 2.3 (a))
- 2- Fully-Reversed Load. (Figure 2.3 (b))
- 3- Zero-to-Full Tensile Load. (Figure 2.3 (c))

Figure 2.3: Types of constant amplitude, proportional loading. (a) 'tensile-to-tensileload', (b)'fully-reversed load', (c) zero-to-full tensile load'.

2.2.3 Non-Constant Amplitude Cyclic Loading

It is the condition when the load-ratio acts as a time dependent. The normal constant amplitude loading uses a single R to determine the mean and alternating values. In contrast, the non-constant type of cyclic loading is completely random and thus there is no analytical pattern can represent its complexity. On the other hand, the calculations of cumulative damage are used to determine the total value of fatigue damage because the fatigue loading that causes the maximum damage cannot be determined easily. Therefore, the cycle counting is converted to a number of functions to reduce the complex load-recording. After that, these functions can be calibrated with the data of constant amplitude test. Trucks loading over the bridges and wind loading over the aircraft are two common examples of non-constant amplitude cyclic loading. Figure 2.4 shows a schematic load history of this type of loading.

Figure 2.4: Non-Constant Amplitude Cyclic Loading.