THE CORRELATION BETWEEN MACHINIBILITY AND SURFACE ROUGHNESS IN CNC LATHE MACHINING

NUR HAZIRA BINTI AMRAN

A report submitted In fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering with Honours

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this project report entitled "The Correlation between Machinability and Surface Roughness in CNC Lathe Machining" is the result of my own research except as cited in the references.

Signature	:
Name	:
Date	:

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in term of scope and quality for the award of the Degree of Bachelor of Mechanical Engineering with Honours.

Signature	·
Supervisor's Name	:
Date	:

DEDICATION

First and Foremost praise is to,

Allah S.W.T, the Almighty, the greatest of all, on whom ultimately we depend on sustenance and guidance.

To my beloved mother and father, SALAMSIAH BINTI MOHTAR AMRAN BIN ZAKARIA

For all ears and shoulders

ABSTRACT

Surface finish is the predominant characteristic for machined component to evaluate their quality. Surface finish gives great effect on the performance or functioning of mechanical parts and production costs. The present studies investigate about the surface quality in turning operation of Aluminum Alloy 6061 and Mild Steel AISI 1060 on CNC OKUMA LB-R Lathe machine. Three parameters namely spindle speed, feed rate, and depth of cut are varied to study their effects of machining parameters on the surface finish of the machined materials. Two machining condition was conducted which are machining under dry and coolant condition to determine the optimal surface roughness on the surface finish of Aluminum Alloy 6061 and Mild Steel 1060. An experiment on 1 inch diameter and 150mm long of both 32 Aluminum Alloy 6061 and Mild Steel AISI 1060 have been carried out. Surface Roughness of the machined materials was measured by using 3D Non-Contact Profilometer. Results showed that quality of materials depends on the certain value of cutting speed, feed rate and depth of cut. Besides, optimal surface roughness effective machining under coolant condition.

ABSTRAK

Kemasan permukaan adalah ciri utama bagi komponen permesinan untuk menilai kualiti mereka. Kemasan permukaan memberi kesan yang besar terhadap prestasi atau fungsi bahagian mekanikal dan kos pengeluaran. Kajian sekarang menyiasat tentang kualiti permukaan dalam beralih operasi aluminium 6061 dan keluli ringan AISI 1060 pada mesin pelarik CNC. Tiga parameter iaitu kelajuan gelendong, kadar suapan, dan kedalaman pemotongan berbeza-beza untuk mengkaji kesan parameter pemesinan pada permukaan permukaan di bawah keadaan kering dan sejuk untuk menentukan kekasaran permukaan optimum pada penamat permukaan aluminium 6061 dan keluli ringan 1060. Eksperimen pada diameter 1 inci dan panjang 150mm kedua-dua 32 aluminium 6061 dan keluli ringan AISI 1060 telah dijalankan. Permukaan Permukaan bahan-bahan pemesinan diukur dengan menggunakan Profilometer Non-Contact 3D. Keputusan menunjukkan bahawa kualiti bahan bergantung kepada nilai tertentu laju pemotongan, kadar suapan dan kedalaman potong. Selain itu, kekasaran permukaan yang optimum diperolehi pemesinan di bawah keadaan permukaan permukaan penyejuk.

v

ACKNOWLEDGEMENT

Firstly, I would like to take this opportunity to express my deepest appreciation to my supervisor, Prof. Dr. Mohd Ahadlin Bin Mohd Daud from Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka for his essential supervision, support, encouragement towards the completion of this project report for the entire year. Without his dedication, this thesis would not be possible.

Next, I would also like to express my greatest gratitude to my panels of PSM I and PSM II Dr. Mohd Azli Bin Salim and Dr. Nadhlene Binti Razali for every advice and suggestion in evaluation of this project report. Apart from that, I would like to thanks to Mr. Mazlan and Mr. Hairi the technician from machining laboratory who patiently guide me using the equipment in the laboratory regardless of time. In the meantime, special thanks also to Mr. Habirafidi technician from welding laboratory and Mr Yusrizaini the technician from fabrication that continuously helped me conduct this study, give a lot of input ad knowledge also a lot of suggestion and guides me among the whole year.

Furthermore, I also want to express my love and gratitude to both of my parents, Mr. Amran Bin Zakaria and Mrs. Salamsiah Binti Mokhtar and siblings who always with me and support whenever I need it. My final year project would not have been completed without my teammate, peers and everyone who had been involved in completing this project. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Standard test part for tensile test (Igunnuoda, O. (2017)	7
2.2	Properties of Aluminum Alloy 6061	14
2.3	Properties of Mild Steel AISI 1060	15
3.1	Input parameters for turning operation.	29
4.1	Surface roughness obtained from Aluminum Alloy 6061 with	31
	increasing spindle speed under dry condition.	
4.2	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	33
	DOC=0.2mm under dry condition	
4.3	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	34
	DOC=0.4mm under dry condition	
4.4	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	36
	DOC=0.6mm under dry condition	
4.5	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	37
	DOC=0.8mm under dry condition	
4.6	Surface roughness obtained from Mild Steel AISI 1060 with	39
	increasing spindle speed under dry condition.	
4.7	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	41
	DOC=0.2mm under dry condition	
4.8	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	42
	DOC=0.4mm under dry condition	
4.9	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	43
	DOC=0.6mm under dry condition	
4.10	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	45
	DOC=0.8mm under dry condition	
4.11	Surface roughness obtained from Aluminum Alloy 6061 with	47
	increasing spindle speed under coolant condition	

C Universiti Teknikal Malaysia Melaka

4.12	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	49
	DOC=0.2mm under coolant condition	
4.13	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	50
	DOC=0.4mm under coolant condition	
4.14	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	51
	DOC=0.6mm under coolant condition	
4.15	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	53
	DOC=0.8mm under coolant condition	
4.16	Surface roughness obtained from Mild Steel AISI 1060 with	55
	increasing spindle speed under coolant condition.	
4.17	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	57
	DOC=0.2mm under coolant condition	
4.18	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	58
	DOC=0.4mm under coolant condition	
4.19	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	59
	DOC=0.6mm under coolant condition	
4.20	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	61
	DOC=0.8mm under coolant condition	
4.21	Justification on effect of spindle speed	63
4.22	Surface roughness obtained from Aluminum Alloy 6061 with	64
	increasing feed rate under dry condition	
4.23	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	66
	DOC=0.2mm under dry condition	
4.24	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	67
	DOC=0.4mm under dry condition	
4.25	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	68
	DOC=0.6mm under dry condition	
4.26	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	69
	DOC=0.8mm under dry condition	
4.27	Surface roughness obtained from Mild Steel 1060 with increasing	71
	feed rate under dry condition	
4.28	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	73
	DOC=0.2mm under dry condition	

4.29	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	74
	DOC=0.4mm under dry condition	
4.30	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	75
	DOC=0.6mm under dry condition	
4.31	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	77
	DOC=0.8mm under dry condition	
4.32	Surface roughness obtained for Aluminum Alloy 6061 with	79
	increasing feed rate under coolant condition	
4.33	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	81
	DOC=0.2mm under coolant condition	
4.34	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	82
	DOC=0.4mm under coolant condition	
4.35	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	83
	DOC=0.6mm under coolant condition	
4.36	Data obtained for Aluminum Alloy 6061 at constant depth of cut,	84
	DOC=0.8mm under coolant condition	
4.37	Surface roughness obtained for Mild Steel AISI 1060 with	85
	increasing spindle feed rate under coolant condition	
4.38	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	87
	DOC=0.2mm under coolant condition	
4.39	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	88
	DOC=0.4mm under coolant condition	
4.40	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	89
	DOC=0.6mm under coolant condition	
4.41	Data obtained for Mild Steel AISI 1060 at constant depth of cut,	90
	DOC=0.8mm under coolant condition	
4.42	Justification on effect of feed rate	92
4.43	Data obtained for Aluminum Alloy 6061 at constant feed rate	93
	of 0.05mm/rev under dry condition	
4.44	Data obtained for Aluminum Alloy 6061 at constant feed rate	94
	of 0.20mm/rev under dry condition	
4.45	Data obtained for Mild Steel AISI 6061 at constant feed rate	95
	of 0.05mm/rev under dry condition	

4.46	Data obtained for Mild Steel AISI 6061 at constant feed rate	96
	of 0.20mm/rev under dry condition	
4.47	Data obtained for Aluminum Alloy 6061 at constant feed rate	97
	of 0.05mm/rev under coolant condition	
4.48	Data obtained for Aluminum Alloy 6061 at constant feed rate	98
	of 0.20mm/rev under coolant condition	
4.49	Data obtained for Mild Steel AISI 1060 at constant feed rate	99
	of 0.05mm/rev under coolant condition	
4.50	Data obtained for Mild Steel AISI 1060 at constant feed rate	101
	of 0.20mm/rev under coolant condition	
4.51	Justification on effect on depth of cut	102
4.52	Comparison of Aluminum Alloy 6061 among dry and coolant	103
	condition at constant depth of cut, DOC=0.2mm	
4.53	Comparison of Mild Steel AISI 6061 among dry and coolant	103
	condition at constant depth of cut, DOC=0.2mm	

LIST OF FIGURES

FIGURE

TITLE

PAGE

2.1	Motions in turning operation (Agrawalla, 2014)	8
2.2	Surface texture [surface roughness, waviness and Lay],	9
	ANSI/ASME B 46.1, American Society of Mechanical Engineers,	
	1985 (Abdul Lani, 2009)	
2.3	Illustration of the depth of cut in turning operation	12
	(Phogat et al., 2013)	
3.1	Project flow chart of this study	18
3.2	Process flow in the CNC turning process.	19
3.3	CNC lathe machine OKUMA LB200-R.	20
3.4	Basic parts in CNC Lathe machine	21
3.5	Tool turret or tool post used to clamp cutting tool	23
3.6	Chips and dirt at spindle chuck area	23
3.7	Clamping work piece at spindle chuck	24
3.8	Ensure the door is closed before start the operation	24
3.9	(a) Aluminum Alloy 6061, (b) Mild Steel AISI 1060, (c) Al 6061	25
	and AISI 1060 after performing turning operation.	
3.10	Ultrasonic cleaner, beaker and Mild Steel AISI 1060	27
3.11	Illustration of using ultrasonic cleaning	27
3.12	3D-Non Contact Profilometer for surface roughness measurement	28
3.13	(a) Measuring surface for Mild Steel AISI 1060,	28
	(b) Measuring surface for Aluminum Alloy	
4.1	A line graph of surface roughness Aluminum Alloy 6061 under	33
	dry condition at constant depth of cut, $DOC = 0.2 \text{ mm}$	
4.2	A line graph of surface roughness Aluminum Alloy 6061 under	35
	dry condition at constant depth of cut, $DOC = 0.4 \text{ mm}$	

4.3	A line graph of surface roughness Aluminum Alloy 6061 under	36
	dry condition at constant depth of cut, $DOC = 0.2 \text{ mm}$	
4.4	A line graph of surface roughness Aluminum Alloy 6061 under	37
	dry condition at constant depth of cut, $DOC = 0.2 \text{ mm}$	
4.5	A line graph of surface roughness Mild Steel AISI 1060 under	41
	dry condition at constant depth of cut, $DOC = 0.2mm$	
4.6	A line graph of surface roughness Mild Steel AISI 1060 under	42
	dry condition at constant depth of cut, $DOC = 0.4mm$	
4.7	A line graph of surface roughness Mild Steel AISI 1060 under	44
	dry condition at constant depth of cut, $DOC = 0.6mm$	
4.8	A line graph of surface roughness Mild Steel AISI 1060 under	45
	dry condition at constant depth of cut, $DOC = 0.8mm$	
4.9	A line graph of surface roughness Aluminum Alloy 6061 under	49
	coolant condition at constant depth of cut, $DOC = 0.2mm$	
4.10	A line graph of surface roughness Aluminum Alloy 6061 under	50
	coolant condition at constant depth of cut, $DOC = 0.4mm$	
4.11	A line graph of surface roughness Aluminum Alloy 6061 under	52
	coolant condition at constant depth of cut, $DOC = 0.6mm$	
4.12	A line graph of surface roughness Aluminum Alloy 6061 under	53
	coolant condition at constant depth of cut, $DOC = 0.8mm$	
4.13	A line graph of surface roughness Mild Steel AISI 1060 under	57
	coolant condition at constant depth of cut, $DOC = 0.2mm$	
4.14	A line graph of surface roughness Mild Steel AISI 1060 under	58
	coolant condition at constant depth of cut, $DOC = 0.4mm$	
4.15	A line graph of surface roughness Mild Steel AISI 1060 under	60
	coolant condition at constant depth of cut, $DOC = 0.6mm$	
4.16	A line graph of surface roughness Mild Steel AISI 1060 under	61
	coolant condition at constant depth of cut, $DOC = 0.8mm$	
4.17	A line graph of surface roughness of Aluminum Alloy 6061 under	66
	dry condition at constant depth of cut, DOC=0.2mm	
4.18	A line graph of surface roughness of Aluminum Alloy 6061 under	67
	dry condition at constant depth of cut, DOC=0.4mm	
4.19	A line graph of surface roughness of Aluminum Alloy 6061 under	68
	dry condition at constant depth of cut, DOC=0.6mm	

4.20	A line graph of surface roughness of Aluminum Alloy 6061 under	69
	dry condition at constant depth of cut, DOC=0.8mm	
4.21	A line graph of surface roughness Mild Steel AISI 1060 under	73
	dry condition at constant depth of cut, $DOC = 0.2mm$	
4.22	A line graph of surface roughness Mild Steel AISI 1060 under	75
	dry condition at constant depth of cut, $DOC = 0.4mm$	
4.23	A line graph of surface roughness Mild Steel AISI 1060 under	76
	dry condition at constant depth of cut, $DOC = 0.6mm$	
4.24	A line graph of surface roughness Mild Steel AISI 1060 under	77
	dry condition at constant depth of cut, $DOC = 0.8mm$	
4.25	A line graph of surface roughness of Aluminum Alloy 6061 under	81
	coolant condition at constant depth of cut, DOC=0.2mm	
4.26	A line graph of surface roughness of Aluminum Alloy 6061 under	82
	coolant condition at constant depth of cut, DOC=0.2mm	
4.27	A line graph of surface roughness of Aluminum Alloy 6061 under	83
	coolant condition at constant depth of cut, DOC=0.2mm	
4.28	A line graph of surface roughness of Aluminum Alloy 6061 under	84
	coolant condition at constant depth of cut, DOC=0.2mm	
4.29	A line graph of surface roughness of Mild Steel AISI 1060 under	87
	coolant condition at constant depth of cut, DOC=0.2mm	
4.30	A line graph of surface roughness of Mild Steel AISI 1060 under	88
	coolant condition at constant depth of cut, DOC=0.4mm	
4.31	A line graph of surface roughness of Mild Steel AISI 1060 under	89
	coolant condition at constant depth of cut, DOC=0.6mm	
4.32	A line graph of surface roughness of Mild Steel AISI 1060 under	91
	coolant condition at constant depth of cut, DOC=0.8mm	
4.33	A line graph of surface roughness of Aluminum Alloy Al 6061	93
	under dry condition at feed rate of 0.05mm/rev	
4.34	A line graph of surface roughness of Aluminum Alloy Al 6061	94
	under dry condition at feed rate of 0.20mm/rev.	
4.35	A line graph of surface roughness of Mild Steel 1060 under	95
	dry condition at feed rate of 0.05mm/rev	
4.36	A line graph of surface roughness of Mild Steel AISI 6061	96
	under dry condition at feed rate of 0.20mm/rev	

4.37	A line graph of surface roughness of Aluminum Alloy 6061	97
	under dry condition at feed rate of 0.05mm/rev	
4.38	A line graph of surface roughness of Aluminum Alloy 6061	99
	under dry condition at feed rate of 0.20mm/rev	
4.39	A line graph of surface roughness of Mild Steel AISI 1060	100
	under dry condition at feed rate of 0.05mm/rev	
4.40	A line graph of surface roughness of Mild Steel AISI 1060	101
	under dry condition at feed rate of 0.20mm/rev	

LIST OF ABBREVIATIONS

Al 6061	-	Aluminum Alloy 6061	
CNC	-	Computerized Numerical Control	
DOC	-	Depth of cut	
RPM	-	Revolution per minutes	
SOP	-	Standard operation procedure	

LIST OF SYMBOLS

V	-	Cutting Speed
f	-	Feed rate
D	-	Initial diameter
d	-	Final diameter
D _{cut}	-	Depth of cut
π	-	Circular Constant
μ	-	Micro
m	-	Meter
mm	-	Millimeter
Ν	-	Spindle Speed

CHAPTER	TITLE	PAGE
	DECLARATION	i
	APPROVAL	ii
	DEDICATION	iii
	ABSTRACT	iv
	ABSTRAK	V
	ACKNOWLEDGEMENT	vi
	LIST OF TABLES	vii
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	XV
	LIST OF SYMBOLS	xvi
1	INTRODUCTION	1
	1.1 Research Background	1
	1.2 Problem Statement	2
	1.3 Objective of the Study	3
	1.4 Scope of the Study	3
	1.5 General Methodology	4
2	LITERATURE REVIEW	5
	2.1 Introduction	5
	2.2 CNC Lathe Machine	5
	2.3 Turning Process	6
	2.4 Surface Roughness	8
	2.5 Parametric Study	10
	2.5.1 Spindle Speed	10
	2.5.2 Feed Rate	11
	2.5.3 Depth of Cut	11
	2.6 Machining Condition	12
	2.6.1 Dry Condition	13
	2.6.2 Coolant Condition	13
	2.7 Materials	14
	2.7.1 Aluminum Alloy	14
	2.7.2 Mild Steel	14
	2.8 Previous Research	15

3	METHODOLOGY	17
	3.1 Experimental Overview	17
	3.2 Project Flowchart	18
	3.3 Experimental Flowchart	19
	3.4 CNC Lathe Machine	20
	3.4.1 Standard Operating Procedure (SOP)	22
	3.4.2 Operating Procedures	22
	3.4.3 Cleaning Procedures	25
	3.4.4 Safety Precaution	26
	3.5 Measurement of Surface Roughness	26
	3.5.1 Cleaning Process of Materials	26
	3.5.2 Surface Roughness Device	27
	3.6 Tabulation of Data	29
4	RESULT AND DISCUSSIONS	30
	4.1 Introduction	30
	4.2 Effect of Spindle Speed on Surface Roughness	30
	4.2.1 Surface Roughness obtained under Dry Condition	30
	4.2.2 Surface Roughness obtained under Coolant Condition	47
	4.2.3 Justification on Effect of Spindle Speed	62
	4.3 Effect of Feed Rate on Surface Roughness	63
	4.3.1 Surface Roughness obtained under Dry Condition	63
	4.3.2 Surface Roughness Obtained under Coolant Condition	79
	4.3.3 Justification on Effect of Feed Rate	91
	4.4 Effect of Depth of Cut on Surface Roughness	92
	4.4.1 Surface Roughness obtained under Dry Condition	92
	4.4.2 Surface Roughness obtained under Coolant Condition	97
	4.4.3 Justification on Effect of Depth of Cut	102
	4.5 Effect of Machining Condition on Surface Roughness	103
E	CONCLUSION AND DECOMMENDATIONS	105
5	CONCLUSION AND RECOMMENDATIONS	105
	5.1 Justification of Objectives	105
	5.2 Review of Findings	105
	5.5 Review of Findings	105
	5.4 Explanation of Findings	106
	5.5 Limitations of Study	10/

5.6 Implication of the Study 107

5.7 Recommendation of the Research	107
REFERENCES	108
APPENDIX	112

CHAPTER 1

INTRODUCTION

1.1 Research Background

Nowadays, machining industries are contributing a lot in metal based industry. Machining is any of various processes in which a cutting tool is used to remove or cut an unwanted raw material into a desired shape and size by a controlled removal process. Usually, machining process used to manufacture metal product but it also can be used on materials such as wood, plastic, ceramic and composites. In most machining process, there are two relative motion which are divided into primary and secondary motion. For primary motion it is called cutting speed and feed rate for secondary motion. These two relative motion combined will produced the desired shape.

Next, surface finish or surface roughness is the predominant characteristic for machined component to evaluate their quality. Surface finish gives great effect on the performance or functioning of mechanical parts and production costs. For example in machine tool industries such as chains, screws, rivets, nails and etc. The surface finish is important in term of tolerances as it can reduces assembly time thus reduces operation time and leads to overall cost reduction. The quality of product very much depends on surface finish. As decreasing the surface finish, also leads to decreasing the product quality. There are various parameters such as cutting speed, feed rate and depth of cut that effect the surface roughness of the machined parts.

In the traditional production industry, most machining are using conventional machine such as conventional lathe and conventional milling machine which are these conventional machine need to operate manually. During the turning operation of the conventional lathe machine, heat is produced in the cutting zone due to the friction between tool-chips and tool-work interfaces. The generated heat strongly affected the tool life and surface finish of the product especially during dry machining or machining the material

without any fluids at all, and only atmospheric air surrounding the cutting zone. In order to minimizing the temperature or generated heat at the machining zone, coolant need to apply to reduce the friction force between the tool-chips and tool-work and also it can carry away the heat produced from the cutting zone.

The principle of numerical control, as demonstrated in 1952, is the electronic version which is coded information in to machine tool instruction. For example, machining is carried out by Computer Numerical Control (CNC), in which computers are used to translate into the movement and operation of the milling, lathe and other various cutting machines. Early CNC machine reads information from tapes or punched cards. In the present day, the CNC machine tool has much advanced further functionality. CNC machines provide flexibility in selecting accurate cutting speed, depth of cut and feed rate simultaneously. This is due to the surface finish quality issue in most machined part. Surface finish becomes main indicator for the machined component quality in manufacturing.

1.2 Problem Statement

Quality plays significant role in today's manufacturing metal based industry. The demand for high quality of machined parts, focuses on surface condition of product especially on surface roughness because its effect on the product appearance, function and reliability. Surface roughness has a great influence on product quality which means the quality of product very much depends on surface roughness. The decreasing of the surface roughness quality also leads to the decreasing of product quality. However, machining industries are facing very great challenges to achieve high quality product with low cost in short time.

There are various parameters that can affect surface roughness of the machined parts which are machining parameters, geometry of the tool, material used or work piece, rigidity of machine and usage of coolant. Meanwhile, due to the surface quality issue, it will affect the mechanical properties of the machined components such as corrosion resistance and fatigue strength, wear resistance, load bearing capacity, heat transmission and load bearing capacity. Therefore, it is necessary to obtain high quality of machined surface roughness and appropriate processes parameters have to be selected to reach the desired surface quality of machined parts.

Therefore, the purpose of the study is to investigate the relationship between cutting parameters and surface roughness of the machined components. An experiment carried out

on a Computer Numerical Controlled (CNC) turning machine with different cutting parameters such as cutting speed, depth of cut, feed rate. Next, the concept of dry machining or there is no applied of coolant during the turning process economic in terms of bring down the manufacturing cost but can cause the tool wear problem, dimensional accuracy of product and low surface finish which is not good in long term effect. Hence, the implementation of coolant is the suggested ways to achieve high quality machined product and increase the tool life.

The study was carried out to evaluate the effect of parameters on the surface roughness for internal cutting profile with turning operation, where the surface roughness values were statistically comparable and to find out the optimum cutting condition by analyzing the different cutting tool length to get the lowest surface roughness in turning an Aluminum solid rod.

1.3 Objective of the Study

The objectives for this project are:

- To study the effect of machining parameters on the surface finish of Aluminum Alloy 6061 and Mild Steel 1060 solid rod in turning operation.
- To determine the optimum surface roughness of Aluminum Alloy 6061 and Mild Steel 1060 rod with or without coolant in turning operation.

1.4 Scope of the Study

In order to achieve the objective, the scopes are prepared as shown below:

- 1. Studying the surface finish of Aluminum Alloy 6061 and Mild Steel 1060 solid rod by performing Turning operation in CNC Lathe Machine with different machining parameters.
- Determining the optimum surface quality of Aluminum Alloy 6061 and Mild Steel AISI 1060 solid rod by using coolant or without coolant during turning process at CNC Lathe Machine.
- Analyzing the optimum surface roughness of Aluminum Alloy 6061 and Mild Steel AISI 1060 solid rod by using 3D-Non Contact Profile

1.5 General Methodology

The actions that need to be carried out to achieve the objectives in this project are listed below.

1. Literature review

Journals, articles or any materials regarding the project will be reviewed.

2. Experimental

An experiment will be conducted by using CNC Lathe machine according to the required data.

3. Analysis

Data acquisition or an analysis will be presented on how the parameters and coolant affected the surface roughness on the material.

4. Report writing

A report on this study will be written at the end of the project.