
 
 
 
 

INFLUENCE OF ROOF SHAPE ON THE NATURAL VENTILATION 
POTENTIAL OF A BUILDING 

 
 
 
 
 
 

GOH-ZHONGYU 
 
 
 
 
 
 
 
 

A report submitted 
in fulfilment of the requirements for the degree of  
Bachelor of Mechanical Engineering with Honours 

 
 
 
 
 
 
 
 

Faculty of Mechanical Engineering 
 
 
 
 
 
 
 
 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 
 
 
 
 
 
 
 

2018 



 

 

DECLARATION 

 

 

I declare that this report entitled “Influence of Roof Shape on the Natural Ventilation 

Potential of a Building” is the result of my own research except as cited in the references. 

The thesis has not been accepted for any degree and is not concurrently submitted in 

candidature of any other degree. 

 

 

     Signature :  

     Name  : GOH-ZHONGYU 

     Date  :  



 

 

SUPERVISOR’S DECLARATION 

 

 

I hereby declare that I have read this project report and in my opinion this report is sufficient 

in terms of scope and quality for the award of the degree of Bachelor of Mechanical 

Engineering with Honours. 

 

 

     Signature :  

     Supervisor : DR. CHENG SEE YUAN 

     Date  :  



 

 

DEDICATION 

 

 

To my beloved mother and father 

 



i 
 

 

 

ACKNOWLEDGEMENTS 

 

 

The success and final outcome of this thesis was the result from a lot of guidance and 

assistance from many individuals and parties. I am extremely fortunate to have them all 

along the execution of the project work.  

 

First and foremost, I would like to express my sincere acknowledgement to my supervisor, 

Dr. Cheng See Yuan from the Faculty of Mechanical Engineering, Universiti Teknikal 

Malaysia Melaka (UTeM) for his unparalleled teachings and support towards the completion 

of this thesis. 

 

Besides, I would like to thank Dr. Fudhail Bin Abdul Munir, Computational Fluid Dynamics 

lecturer from the Faculty of Mechanical Engineering for his assistance in the CFD simulation 

works. Furthermore, I owe my profound gratitude to my peers who took interest on my 

project work and helped me in solving some critical CFD simulation problems. 

 

Special thanks to my parents and sibling for their undivided moral support. Without them, 

this thesis would not have been possible to occur. Finally, I am thankful to all the people 

involved in this thesis and I am fortunate enough to get constant encouragement, support and 

guidance from them which helped me in successfully completing my thesis. Also, I would 

like to extend my sincere regards to all of them for their timely support. 

 



ii 
 

 

 

ABSTRACT 

 

 

The present study investigated the influence of different roof shapes on the natural 

ventilation potential of an isolated low-rise building by using Computational Fluid 

Dynamics (CFD). The Barrel Vault, Gable, Pyramid and Shed roof were chosen for the study. 

The Realizable k-ε turbulent model was adopted in the CFD simulations. The wind which 

obeyed power law equation was set to approach the building model at eight different angles. 

The natural ventilation potential of the ground and the upper floors of the building model 

were studied separately with the assumption of no cross ventilation between both floors. The 

Shed roof shape was found out to be the highest performer in inducing natural ventilation, 

the Barrel Vault roof came in second, followed by the Gable roof and lastly, the Pyramid 

roof. It was proven that different roof shapes will have significant influence on the natural 

ventilation potential of a building.  
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ABSTRAK 

 

 

Kajian ini mengkaji pengaruh bentuk bumbung yang berbeza kepada potensi pengudaraan 

semula jadi sesebuah bangunan dengan menggunakan Dinamik Bendalir Berkomputer. 

Bumbung “Barrel Vault”, “Gable”, “Pyramid” dan “Shed” telah dipilih sebagai bentuk 

kajian. Model bergelora “Realizable k-ε” telah digunakan dalam simulasi Dinamik Bendalir 

Berkomputer. Angin yang berdassarkan formula “power law” telah ditetapkan untuk menuju 

ke bangunan modal dari lapan arah yang berbeza. Potensi pengudaraan semula jadi bagi aras 

bawah dan aras atas telah dikaji secara berasingan dengan andaian tiada pengudaraan salib 

antara kedua-dua aras. Bentuk bumbung “Shed” didapati mencapai potensi pengudaraan 

semula jadi yang tertinggi, bentuk bumbung “Barrel Vault” mencapai tempat kedua, diikuti 

bentuk bumbung “Gable” dan akhir sekali, bentuk bumbung “Pyramid”. Kajian ini tela 

membuktikan bahawa bentuk bumbung yang berbesa akan mempengaruhi potensi 

pengudaraan semula jadi sesebuah bangunan.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 BACKGROUND 

Ventilation is a process of air circulation or exchange of air into and out of a space. 

In a tropical country like Malaysia, ventilation plays an important role in good indoor air 

quality (IAQ) of a building. Adequate air ventilation provide thermal comfort in a building 

and at the same time reduce the possibility of Sick Building Syndrome (SBS) among the 

residents (Norhidayah et al, 2013). According to an estimation by Spiru and Simona (2017), 

people in urban areas tend to spend up to 90% of their time in indoor environments especially 

work place. Hence, ventilation is crucial to ensure human wellbeing in a building. 

 

There are essentially two types of ventilation: natural ventilation and mechanical 

ventilation. Natural ventilation usually involves wind while mechanical ventilation involves 

machines like fans and air conditioners. Mechanical ventilation systems force the air moves 

in the designated motion to provide ventilation or manipulating the temperature of air by 

certain degree. On the other hand, formation of natural ventilation relies heavily on air 

velocity and air flow pressure difference (Burnett et al, 2005). For cases where only 

insignificant indoor and outdoor temperature difference occur, air flow pressure difference 

determines the performance of natural ventilation (Cheng, 2007). As one of the aspects of 

building design, roof shape can create air flow pressure difference and thus affecting natural 

ventilation potential.   
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Despite the convenience of mechanical ventilation system functions, it occupies 

more than half of the annual energy consumption in a building at a rate of 100kWh per square 

meter of floor space (Bastide, 2006). Over reliance on mechanical ventilation on a global 

scale will cause enormous amount of burden towards the environment and energy suppliers 

(Omrani et al, 2017). According to Schulze and Eicker (2013), several studies showed 

natural ventilation was able to save 17% of energy consumption by mechanical ventilation 

in a targeted building at Meiji University, Tokyo. 

 

Studies done by Kubota and Ahmad (2006) shows that application of natural 

ventilation could build up thermal comfort in tropical climate conditions while improving 

indoor air quality as it removes hot polluted air in a building. Natural ventilation approach 

on a building design proved to be a cost and operation effective solution for higher indoor 

environment comfort (Lei et al, 2017). The advantages of natural ventilation has grabbed 

attention of architects as the future of building design is more aggressive on environmental 

friendly and energy saving approach.  

 

Estate developers tend to focus more on aesthetic rather than functionality in their 

housing design to attract buyers. Usually, the natural ventilation potential of a building is 

not in the primary consideration of the buyers as they unknowingly compromise by utilizing 

mechanical ventilation systems that are widely available in the market. This behaviour may 

lead to unbalanced approach on both aesthetic and functionality aspects during building 

design process which directly interrupts the air flow pressure difference around the building.    
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One of main factors found affecting the natural ventilation performance of a building 

in a study did by Aynsley (2007) was the building shape. The roof design has huge influence 

on air flow patterns around the building (Peren et al, 2015). Therefore, the intent of the 

project was to study the influence of roof shape on the natural ventilation potential on a 

building. The validation and verification of computational fluid dynamics (CFD) application 

were done by referring to a closely related work of Tominaga et al (2015). A few common 

roof shapes on typical low rise building were chosen as the target of investigation. Several 

vital parameters such as distribution of air pressure difference and air velocity on different 

roof shape designs were examined. The simulations were done on CFD capable software 

and data were extracted for further analysis on natural ventilation potential. 

 

  




