SUPERVISOR DECLARATION

"I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (with Honours)"

Signature: _____

Supervisor: DR.TEE BOON TUAN

Date: _____

IMPROVEMENT OF AN INDOOR ENVIRONMETNAL QUALITY (IEQ) IN ENGINEERING LABORATORIES

CHONG HONG LEONG

A report submitted in fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering (with Honours)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

"I hereby declare that this project report entitled "Improvement of an Indoor Environmental Quality of Engineering Laboratories" is my own work except as cited in the references."

Signature:

Name : CHONG HONG LEONG

Date :_____

DEDICATION

For my beloved Dad and Mum

ACKNOWLEDGEMENT

First, I would like to express my special thanks of gratitude to my supervisor Dr. Tee Boon Tuan for his patient guidance along this project. I am highly benefited by this project and gained a lot of knowledge about the various analysis conducted to evaluate indoor environment quality.

Besides, I would like to thank Mr. Asjufri bin Muhajir, assistant engineer for airconditioning lab who has patiently taught me how to use the instrument to conduct physical measurement. Furthermore, I would also like to thank the assistant engineer for machine workshop, Mr. Mazlan Bin Tumin and the assistant engineer for welding workshop, Mr. Habirafidi Bin Ramly who have helped me during physical measurement period.

In addition, special thanks to all the respondents who has given their cooperation in questionnaire survey. I would like to thank my friends who have supported me throughout this project.

Finally, I am greatly thankful to my beloved family for their strong support all this time. Contributions from all of them are kindly appreciated as it ensures the completion of this project.

ABSTRACT

Indoor environment conditions of a building are one of the concerned issues as people usually spend most of their time inside the buildings. Poor indoor environmental conditions can influence human health in terms of physiological, perceptual and emotional as well. The main objective of this study is to determine the indoor environment condition of engineering laboratories in Mechanical Engineering Laboratories Complex. Thermal comfort analysis and indoor air quality analysis were conducted to evaluate the indoor environment quality of the laboratories. Analysis consists of physical measurement and subjective measurement. Physical measurements were conducted with occupancy and no occupancy condition while subjective measurement was carried out through questionnaire. Results show that air-conditioned machine workshop has temperature of 20.8°C which is not within the MS 1525:2014 standard but still acceptable by occupants. Meanwhile, the thermal condition of non-air conditioned welding workshop is not complied with ASHRAE Standard 55:2010 in terms of air temperature, PMV and PPD index. In addition, result from occupant's air odor perception indicates that air odor problem occurred in both Based on the findings, indoor environment quality improvement case study areas. measures are proposed to enhance the IEQ level of the laboratory.

ABSTRAK

Keadaan persekitaran dalaman bangunan merupakan salah satu isu yang diberi perhatian kerana orang biasanya menghabiskan sebahagian besar masa mereka di dalam bangunan. Keadaan persekitaran dalaman yang teruk boleh mempengaruhi kesihatan manusia dari segi fisiologi, persepsi dan juga emosi. Objektif utama kajian ini adalah untuk menentukan keadaan persekitaran dalaman makmal kejuruteraan Kompleks Makmal Kejuruteraan Mekanikal. Analisis keselesaan termal dan analisis kualiti udara dalaman dijalankan untuk menilai kualiti alam sekitar dalaman di makmal. Analisis terdiri daripada pengukuran fizikal dan ukuran subjektif. Pengukuran fizikal dijalankan dengan penghuni dan tiada keadaan penghuni manakala pengukuran subjektif dilakukan melalui soal selidik. Hasil kajian menunjukkan bahawa bengkel mesin berhawa dingin mempunyai suhu 20.8 °C yang tidak mencapai Piawaian MS 1525:2014 tetapi masih dapat diterima oleh penghuni. Sementara itu, keadaan termal bagi bengkel kimpalan yang tidak berhawa dingin tidak mematuhi Piawaian ASHRAE 55:2010 dari segi suhu udara, indeks PMV dan PPD. Selain itu, hasil daripada persepsi bau udara penghuni menunjukkan bahawa masalah udara berbau berlaku di kedua-dua tempat kajian kes. Berdasarkan penemuan ini, langkahlangkah untuk memperbaiki kualiti alam sekitar dalaman dicadangkan untuk meningkatkan kualiti alam sekitar dalaman makmal.

viii

TABLE OF CONTENTS

CHAPTER TITLE

1

2

PAGE

SUPER	VISOR'S I	DECLARATION	ii
DECLA	RATION		iv
DEDIC	ATION		v
ACKNO	OWLEDGI	EMENTS	vi
ABSTR	ACT		vii
ABSTR	AK		viii
TABLE	OF CON	FENTS	ix
LIST O	F TABLES	8	xiv
LIST O	F FIGURE	ES	xvii
LIST O	F SYMBO	LS	xxii
LIST O	F ABBRE	VIATIONS	xxiii
LIST O	F APPENI	DICES	XXV
INTRO	DUCTION	1	1
1.1	PROBLEM	A STATEMENTS	2
1.2	OBJECTIV	VES	3
1.3	SCOPES		3
1.4	SIGNIFIC	ANCE OF THE STUDY	3
THEOI	RY		5
2.1	INDOOR I	ENVIRONMENTAL QUALITY	5
2.2	THERMA	L COMFORT	6
	2.2.1	Thermal Comfort Environmental Factors	7
	2.2.2	Thermal Comfort Personal Factors	9
2.3	PREDICT	ED MEAN VOTE	10
2.4	INDOOR A	AIR QUALITY	11
	2.4.1	Indoor Air Quality Parameters	13
2.5	VENTILA	TION	16

2.6	AIR-CO	NDITIONING AND MECHANICAL	17
	VENTIL	ATION (ACMV) SYSTEMS	
2.7	STANDA	ARD	19
	2.7.1	Malaysia Standard MS 1525: 2014	19
	2.7.2	ASHRAE Standard 55- 2010, Thermal	20
		Environmental Conditions for Human	
		Occupancy	
	2.7.3	ASHRAE Standard 62.1-2010,	21
		Ventilation for Acceptable Indoor Air	
		Quality	
LITE	RATURE I	REVIEW	22
3.1	INVEST	FIGATION OF INDOOR ENVIRONMENT	22
	QUAL	ITY IN CLASSROOM BY VILCEKOVA ET	
	AL. (20	017)	
	3.1.1	Methodology	23
	3.1.2	Results	24
	3.1.3	Conclusion	25
3.2	STUDY	TO IMPROVE INDOOR AIR QUALITY IN	26
	COMP	UTER LABORATORIES BY TELEJKO	
	(2017)		
	3.2.1	Methodology	26
	3.2.2	Results	26
	3.2.3	Conclusion	29
3.3	STUDY	OF CONCENTRATION OF PARTICULAR	29
	MATT	ER, CO, CO ₂ IN SELECTED SCHOOLS IN	
	MALA	YSIA BY RAZALI ET AL. (2015)	
	3.3.1	Methodology	30
	3.3.2	Results	31
	3.3.3	Conclusion	32
3.4	ARCHI	TECTURAL EVALUATION OF THERMAL	33
	COMF	ORT: SICK BUILDING SYMPTOMS IN	
	ENGIN	EERING EDUCATION LABORATORIES	
	BY AM	AIN ET AL. (2014)	

	3.4.1	Methodology	33
	3.4.2	Results	34
	3.4.3	Conclusion	38
3.5	STUDY	OF THE INDOOR AIR QUALITY IN	38
	THREE	NON-RESIDENTIAL ENVIRONMENTS	
	OF DIF	FERENT USE: A MUSEUM, A PRINTERY	
	INDUS	TRY AND AN OFFICE BY SARAGA ET	
	AL. (20	11)	
	3.5.1	Methodology	38
	3.5.2	Results	39
	3.5.3	Conclusion	41
3.6	STUDY	OF THERMAL COMFORT IN LECTURE	41
	HALLS	IN THE TROPICS BY YAU, CHEW, AND	
	SAIFUI	LLAH (2011)	
	3.6.1	Methodology	42
	3.6.2	Results	42
	3.6.3	Conclusion	44
3.7	CARBC	ON DIOXIDE CONCENTRATIONS	44
	ANALY	SIS INSIDE LECTURE ROOMS BY	
	DADAN	N ET AL. (2006)	
	3.7.1	Methodology	45
	3.7.2	Results	45
	3.7.3	Conclusion	46
3.8	OVERA	ALL COMPARISON OF PREVIOUS	47
	STUDI	ES	
METH	ODOLOG	Y	53
4.1	MECHA	ANICAL ENGINEERING LABORATORIES	53
	COMPI	LEX OF UTEM	
4.2	SELEC	FION OF MECHANICAL ENGINEERING	54
	LABOR	ATORIES	
4.3	PHYSIC	CAL MEASUREMENT	55
	4.3.1	Thermal Comfort Parameters	56
		Measurement	

	4.3.2	Indoor Air Quality Parameters	60
		Measurement	
4.4	SURVE	Y	63
	4.4.1	Selection of Respondents	65
4.5	RESULT	Γ ANALYSIS	65
	4.5.1	Results Comparison between Physical	66
		Measurements with Standards	
	4.5.2	Analysis of Occupant's Sensation Votes	66
		based on Questionnaire	
	4.5.3	Results Comparison between	67
		Questionnaire and Physical	
		Measurements	
4.6	RECOM	MENDATION ON INDOOR	67
	ENVIRO	DNMENT QUALITY IMPROVEMENT	
	MEASU	RES	
4.7	GENER	AL METHODOLOGY IN THIS STUDY	67
RESU	LTS AND A	NALYSIS	69
5.1	PHYSIC	AL MEASUREMENT RESULTS	69
	5.1.1	Machine Workshop (With Occupants	70
		and Without Occupants)	
	5.1.2	Welding Workshop (With Occupants	82
		and Without Occupants)	
	5.1.3	Overall Physical Measurement Results	94
5.2	SUBJEC	TIVE ASSESSMENT	102
	5.2.1	Comparison between Objective	112
		Measurement and Questionnaire	
5.3	REGRES	SION ANALYSIS	116
	5.3.1	Regression Analysis on Machine	116
		Workshop	
	5.3.2	Regression Analysis on Welding	120
		Workshop	
	5.3.3	Summary of Result	124

	5.4	SUGGES	ΓΙΟΝ ΟΝ IEQ IMPROVEMENT	126
		MEASUR	ES	
		5.4.1	Improvement Measures in Machine	127
			Workshop	
		5.4.2	Improvement Measures in Welding	133
			Workshop	
6	CONO	CLUSION		146
	6.1	CONCLU	SION	146
	6.2	RECOMN	IENDATION	147
	REFE	RENCES		148
	APPE	NDIX		154

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	ASHRAE Thermal Comfort Scale (ASHRAE Standard 55,	10
	2010)	
2.2	Types of indoor air contaminants (WHO, 1991)	12
2.3	Emissions of CO ₂ for various levels of activity (Telejko, 2017)	14
2.4	Types of dust in work environment (WHO, n.d.)	15
2.5	Concentration of interest for several air contaminants	21
	(ASHRAE 62.1, 2010)	
3.1	Scales used in questionnaire (Vilcekova et al., 2017)	24
3.2	Average value of each parameter in summer season (Vilcekova	24
	et al., 2017)	
3.3	Results of subjective evaluation of IEQ parameters in summer	25
	(Vilcekova et al., 2017)	
3.4	Maximum and minimum values of indoor air parameters for six	28
	labs (Telejko, 2017)	
3.5	Maximum and minimum values of indoor air parameters for six	28
	labs after installation of window vents (Telejko, 2017)	

TABLE	TITLE	PAGE
3.6	Summary of indoor and outdoor air pollutants concentrations	32
	(Razali et al., 2015)	
3.7	Measured parameters in three EELs (Amin et al., 2014)	35
3.8	Recommended ranges for thermal parameters by ASHRAE,	35
	WHO, NEA (Amin et al., 2014)	
3.9	$PM_{2.5}$ concentration values in museum, $\mu g/m^3$ (Saraga et al.,	39
	2011)	
3.10	$PM_{2.5}$ and PM_{10} concentration values in printer, $\mu g/m^3$ (Saraga	40
	et al., 2011)	
3.11	$PM_{2.5}$ and PM_1 concentration values in offices, $\mu g/m^3$ (Saraga et	40
	al., 2011)	
3.12	PMV and PPD in lecture halls (Yau, Chew, and Saifullah, 2011)	43
3.13	AMV and TSV in lecture halls (Yau, Chew, and Saifullah,	44
	2011)	
3.14	Recommended range for thermal comfort parameters (ASHRAE	47
	55, 2010; DOSH Malaysia, 2010; MS 1525, 2014)	
3.15	Recommended concentration for indoor air quality parameters	48
	(ASHRAE 62.1, 2010; DOSH Malaysia, 2010)	
3.16	Comparison of results from previous studies	49
4.1	Physical Parameters involved in this study	56
4.2	Probes in Thermal Microclimate HD32.1	57
4.3	Probes used in this study	58
5.1	Physical measurement results in machine workshop	94
5.2	Physical measurement results in welding workshop	96

TABLE	TITLE	PAGE
5.3	Occupant's thermal sensation vote for both workshops	102
5.4	Occupant's relative humidity sensation vote for both workshops	105
5.5	Occupant's air velocity sensation vote for both workshops	107
5.6	Occupant's odor perception votes for both workshops	109
5.7	Occupant's satisfaction on air temperature in both workshops	110
5.8	Occupant's overall comfort perception on both workshops	111
5.9	Occupant's clo value and metabolic rates in both workshops	113
5.10	Classification of R-squared value (Moore et al., 2013)	116
5.11	Overall regression results for both workshops	126
5.12	Specifications of exhaust fan ("Industrial Fans Direct," n.d.)	129
5.13	Specifications of transfer air grille ("TROX ", n.d.)	131
5.14	Specifications of supply fan ("Industrial Fans Direct," n.d.)	137
5.15	Specifications of exhaust fan ("Industrial Fans Direct," n.d.)	138
5.16	Specifications of wall mounted air circulator fan ("Industrial	140
	Fans Direct," n.d.)	
5.17	Specifications of awning window ("Stanek Windows," n.d.)	141
5.18	Specifications of awning window ("Stanek Windows," n.d.)	143
5.19	Specifications of casement window ("Stanek Windows," n.d.)	144

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Predicted percentage dissatisfied (PPD) as a function of	11
	predicted mean vote (PMV) (ASHRAE 55, 2010)	
3.1	Indoor air parameters for a selected laboratory (Telejko, 2017)	27
3.2	Thermal sensation votes in three EELs (Amin et al., 2014)	37
3.3	Relative humidity sensation votes in three EELs (Amin et al.,	37
	2014)	
3.4	Air velocity sensation votes in three EELs (Amin et al., 2014)	37
4.1	Mechanical Engineering Laboratories Complex of UTeM	54
4.2	Welding workshop (non-air conditioned)	54
4.3	Machine workshop (air conditioned)	55
4.4	Thermal Microclimate HD32.1 (Delta Ohm SRL, 2009)	57
4.5	Instruments placed in centre of each zone in machine workshop	59
4.6	Instruments placed in centre of each zone in welding workshop	59
4.7	Measurement conducted for non-occupancy condition (left) and	60
	occupancy condition (right) in machine workshop	
4.8	Measurement conducted for non-occupancy condition (left) and	60
	occupancy condition (right) in welding workshop	

FIGURE	TITLE	PAGE
4.9	IAQ-Calc Indoor Air Quality Meter 7545	61
4.10	DustTrak II Aerosol Monitor	61
4.11	Measurement of CO ₂ concentrations conducted in same zones	63
	as divided in thermal comfort analysis	
4.12	Measurement of $PM_{2.5}$ and PM_{10} concentrations conducted in	63
	same zones as divided in thermal comfort analysis	
4.13	Occupants filled questionnaires in machine workshop (left) and	65
	welding workshop (right)	
4.14	Flow chart of methodology	68
5.1	Indoor air temperature in machine workshop during morning	71
5.2	Indoor air temperature in machine workshop during afternoon	72
5.3	Relative humidity in machine workshop during morning	73
5.4	Relative humidity in machine workshop during afternoon	74
5.5	Indoor air velocity in machine workshop during morning	75
5.6	Indoor air velocity in machine workshop during afternoon	76
5.7	Carbon dioxide level in machine workshop during morning	77
5.8	Carbon dioxide level in machine workshop during afternoon	78
5.9	PM 2.5 concentration in machine workshop during morning	79
5.10	PM2.5 concentration in machine workshop during afternoon	80
5.11	PM 10 concentration in machine workshop during morning	81
5.12	PM 10 concentration in machine workshop during afternoon	82
5.13	Indoor air temperature in welding workshop during morning	83
5.14	Indoor air temperature in welding workshop during afternoon	84
5.15	Relative humidity in welding workshop during morning	85

FIGURE	TITLE	PAGE
5.16	Relative humidity in welding workshop during afternoon	86
5.17	Indoor air velocity in welding workshop during morning	87
5.18	Indoor air velocity in welding workshop during afternoon	88
5.19	Carbon dioxide level in welding workshop during morning	89
5.20	Carbon dioxide level in welding workshop during afternoon	90
5.21	PM 2.5 concentration in welding workshop during morning	91
5.22	PM2.5 concentration in welding workshop during afternoon	92
5.23	PM 10 concentration in welding workshop during morning	93
5.24	PM 10 concentration in welding workshop during afternoon	94
5.25	Frequency distribution of occupant's thermal sensation based on	104
	ASHRAE 7-points scale	
5.26	Frequency distribution of occupant's relative humidity sensation	106
	based on ASHRAE 7-points scale	
5.27	Frequency distribution of occupant's air velocity sensation	108
	based on ASHRAE 7-points scale	
5.28	Frequency distribution of occupant's odor perception	110
5.29	Frequency distribution of occupant's satisfaction on air	111
	temperature in both workshops	
5.30	Frequency distribution of occupant's overall comfort perception	112
	on both workshops	
5.31	Graph of PMV versus operative temperature in machine	117
	workshop	
5.32	Graph of PMV versus air velocity in machine workshop	118

xix

FIGURE	TITLE	PAGE
5.33	Graph of air odor vote versus carbon dioxide level in machine	119
	workshop	
5.34	Graph of air odor vote versus PM2.5 concentration in machine	119
	workshop	
5.35	Graph of air odor vote versus PM10 concentration in machine	120
	workshop	
5.36	Graph of PMV versus operative temperature in welding	121
	workshop	
5.37	Graph of PMV versus relative humidity in welding workshop	121
5.38	Graph of PMV versus air velocity in welding workshop	122
5.39	Graph of air odor vote versus carbon dioxide level in welding	123
	workshop	
5.40	Graph of air odor vote versus PM2.5 concentration in welding	123
	workshop	
5.41	Graph of air odor vote versus PM10 concentration in welding	124
	workshop	
5.42	Design location for exhaust fan in machine workshop	130
5.43	Design location for wall grille in machine workshop	132
5.44	Design location for door grille in machine workshop	132
5.45	Design location in machine workshop	133
5.46	Design location for supply air fan in welding workshop	137
5.47	Design location for exhaust fans in welding workshop	139
5.48	Design location for air circulator fans in welding workshop	140
5.49	Design location for awning window in welding workshop	142

FIGURE	TITLE	PAGE
5.50	Design location for awning window in welding workshop	142
5.51	Design location for awning window in welding workshop	143
5.52	Design location for casement window in welding workshop	144
5.53	Design location in welding workshop	145

LIST OF SYMBOLS

SYMBOLS DESCRIPTION

°C	Degree Celsius
°F	Fahrenheit
K	Kelvin
m	Metre
mm	Millimetre
S	Seconds
%	Percent
W	Watt
m/s	Velocity
ppm	Parts-per-million
cfm	Cubic feet per minute
R^2	Coefficient of determination
L/s	Litre per second

LIST OF ABBREVIATIONS

ABBREVIATION DESCRIPTION

А	Afternoon Session
AV	Air Velocity
AOV	Air Odor Vote
ACMV	Air-Conditioning and Mechanical Ventilation
ASHRAE	American Society of Heating, Refrigeration and Air-Conditioning
	Engineers
CLO	Clothing Insulation Value
CO	Carbon Monoxide
CO_2	Carbon Dioxide
DOSH	Department of Occupational Safety and Healthy
EEL	Engineer Education Laboratories
IAQ	Indoor Air Quality
IEQ	Indoor Environmental Quality
ISO	International Organization of Standardization
М	Morning Session
MS	Malaysia Standard
PM	Particular Matter
PMV	Predicted Mean Vote
PPD	Predicted Percentage of Dissatisfied
RH	Relative Humidity

xxiii

ABBREVIATION DESCRIPTION

SBS	Sick Building Syndrome
TSV	Thermal Sensation Vote
UTeM	Universiti Teknikal Malaysia Melaka
WHO	World Health Organization

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Flow Chart of Final Year Project	155
В	Project Gantt Chart for PSM 1	156
С	Project Gantt Chart for PSM 2	157
D	Floor Plan of UTeM Mechanical Engineering Laboratories	158
	Complex	
Е	Questionnaire for Machine Workshop	159
F	Questionnaire for Welding Workshop	160
G	Graphs of PPD as a function of PMV for Machine Workshop	161
	(No Occupants)	
Н	Graphs of PPD as a function of PMV for Machine Workshop	162
	(Occupants)	
Ι	Graphs of PPD as a function of PMV for Machine Workshop	163
	(No Occupants)	
J	Graphs of PPD as a function of PMV for Machine Workshop	164
	(Occupants)	
K	Zone Separation For Machine and Welding Workshop	165