AUTOMATED INTELLIGENT DRAWER OR LOCKER SECURITY SYSTEM

Shafizal Bin Hassan

Bachelor of Mechatronics Engineering MAY 2010

AUTOMATED INTELLIGENT DRAWER OR LOCKER SECURITY SYSTEM

SHAFIZAL BIN HASSAN

A report submitted in partial fulfillment of the requirements for the degree of Bachelor of Mechatronics Engineering

Faculty of Electrical Engineering UNIVERSITI TEKNIKAL MALAYSIA MELAKA

YEAR 2010

-1

"I hereby declare that I have read through this report entitle "Automated Intelligent Drawer or Locker Security System" and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Mechatronics Engineering"

Signature

: En. Muhammad Herman Bin Jamaluddin Supervisor's Name

: 22 April 2010 Date

I declare that this report entitle "Automated Intelligent Drawer or Locker Security System" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : Shafizal Bin Hassan

Date : 22 April 2010

To my beloved mother and father
Hassan Bin Ahamad and Maizon Bt Md Aruf
In appreciation of supported and understanding.

ACKNOWLEDGEMENT

Alhamdulillah, praise be to Allah, the Cherisher and Sustainer of world, most Gracious, most Merciful Lord.

In preparing this report, I was in contact with many people and academicians. They have contributed towards my understanding and thought. In particular, I wish to express my sincere appreciation to my project supervisors, Mr. Ahmad Zaki Bin Haji Shukor and Mr. Herman Bin Jamaluddin, for encouragement, guidance critics, friendship, advices and motivation.

My fellow undergraduate students should also be recognized for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.

Last but not least, I am grateful to all my family members, for supporting steadfastly and their appreciated advice through my project completion.

ABSTRACT

Nowadays, so many crime cases can occur around us even though we have done all the security measures. For examples, bank robbery can occur in a high security system. If a robber attempt to enter a facility, he will try and break open all the drawers and lockers, so that he can take all the valuables in the property. This is where this automated intelligent plays its part in providing the second backup security system after the existing door or entry security system. The project is called "Automated Intelligent Drawer or Locker Security System" to build a security and safety system which can protect our properties in the drawer or locker. Owner can manually set or reset their personal code. The security system is control by a microcontroller. Keypad reader is used by owner to access to open and lock up their locker (magnetic lock) in active mode then door open automatically. If the drawer had been broken up, the owner will get the information status of their properties which is in danger by using GSM modem.

ABSTRAK

Pada hari ini, pelbagai kes jenayah berlaku di sekeliling kita walaupun kita telah menitikberatkan keselamatan diri. Sebagai contoh, rompakan bank boleh berlaku di kawasan yang mempuyai tahap keselamatan yang tinggi. Sekiranya pencuri cuba untuk memasuki sesebuah premis, dia akan berusaha membuka semua laci dan peti simpanan supaya dapat mengambil semua barang-barang bernilai. Di sinilah kepandaian automatik memainkan peranan dalam menyediakan sistem keselamtan perlidungan kedua. Projek bertajuk "Sistem Keselamtan Bijak Automatik Laci atau Peti Simpanan" adalah untuk memcipta sistem perlindungan dan keselamatan dimana dapat melindungi harta benda di dalam laci atau peti simpanan. Pemilik boleh menyimpan atau memadam kata laluan persendiriran secara manual. Mikropengawal berperanan mengawal sistem perlindungan. Pembaca kekunci pelapik digunakan oleh pemilik untuk membuka dan mengunci peti simpanan mereka (kekunci magnetik) dalam mod aktif seterusnya pintu terbuka secara automatik. Sekiranya laci tersebut di pecah masuk, pemilik akan mendapat maklumat berkenan harta mereka dalam bahaya menggunakan modem GSM.

TABLE OF CONTENTS

Chapter	Desc	ription		Pages
	ACKNOWLEDGEMENT			iv
	ABS	TRACT		V
	TAB	LE OF	CONTENTS	vii
	LIST	OF FIG	GURES	xi
	LIST	OF TA	BLES	xiii
	LIST	OF AB	BBREVIATIONS	xiv
	LIST	OF AP	PENDICES	XV
1.0	INTRODUCTION			1
	1.1	Projec	et background	1
	1.2	Proble	em statement	2
	1.3	Objec	tives of the project	2
	1.4	Scope	of the project	3
	1.5	Outlin	nes of progress report	4
2.0	LITERATURE REVIEW			5
	2.1	2.1 Introduction		5
	2.2	Resea	rch about safety and security product	5
		2.2.1	Digimatic Electronic Safety Locker	6
		2.2.2	Mini Lok-All Keyless Locker	7
		2.2.3	Aftek Spyguard	7
		2.2.4	Smarthome SecureLinc Wireless Home	9
			Security System	
		2.2.5	AlertMe ZigBee Smart Home Security System	10
		2.2.6	Outcomes research	11

	2.3	Globa	l System for Mobile Communication (GSM)	12
		2.3.1	Introduction of a GSM	12
		2.3.2	GSM architecture	12
		2.3.3	AT Command	14
			2.3.3.1 AT Command Syntax	15
	2.4	Softw	are specification	16
		2.4.1	MicroC compiler	16
		2.4.2	ISIS 7.5 Professional	18
		2.4.3	ARES 7.5 Professional	19
	2.5	Hardv	vare specification	20
		2.5.1	Microcontroller (PIC16F877A)	20
		2.5.2	GSM modem	22
		2.5.3	RS 232 Serial Port	23
3.0	MET	ODOH	LOGY	26
	3.1	Introd	uction	26
	3.2	Proce	ss Flow Chart	26
		3.2.1	Literature Review / Technical Research	29
		3.2.2	Identification of components	30
		3.2.3	Design software and simulation	31
		3.2.4	Design electronic and mechanical assembly	31
		3.2.5	Interfacing software and hardware	32
		3.2.6	Analyze output and improving design	32
	3.3	Hardv	vare implementation	32
		3.3.1	Alphanumeric LCD (Liquid Crystal Display)	32
		3.3.2	Keypad	35
		3.3.3	Relay	36
		3.3.4	Electro-Magnetic Lock (EM Lock)	37
		3.3.5	GSM Modem	38
		3.3.6	PIC Microcontroller	41

			3.3.6.1 ADC Module	41
			3.3.6.2 I/O Ports	42
			3.3.6.3 Data EEPROM and Flash	
			Program Memory	44
			3.3.6.4 USART Module	44
	3.4	Softw	are implementation	46
		3.4.1	MicroC compiler	46
		3.4.2	Proteus ISIS Professional (Simulation)	47
		3.4.3	Proteus ARES Professional (PCB design)	48
4.0	DFCI	HT AN	ND ANALYSIS	50
7.0	4.1		uction	50
	4.2	Software result		50
	7.2	4.2.1	Simulation result	50
		1.2.1	4.2.1.1 Insertion personal code and mobile phone	51
			4.2.1.2 Safe mode condition with correct password	53
			4.2.1.3 Unsafe mode condition with	54
			incorrect password	
	4.3	Hardv	vare result	56
		4.3.1	Project prototype	56
		4.3.2	Microcontroller main circuit	58
		4.3.3	Project model	61
	4.4	Exper	iment and analysis	63
		4.4.1	Experiment 1 – Determine the response of data	
			storage system towards GSM modem	64
			4.4.1.1 Procedures	64
			4.4.1.2 Result	65
			4 4 1 3 Analysis	66

		4.4.2	Experiment 2 – Analyze effect of torque performance	ce
			to drawer and feeder pillar model	66
			4.4.2.1 Procedures	66
			4.4.1.2 Result	67
			4.4.1.3 Analysis	68
5.0	DISC	CUSSIO	N OF RESULT	69
	5.1	Introd	luction	69
	5.2	Proble	ems	70
		5.2.1	Software Problem	70
		5.2.2	Hardware Problem	71
6.0	CON	CLUSI	ON AND RECOMMENDATION	73
	6.1	Concl	usion	73
	6.2	Recor	mmendation	75
REFERE	NCES			76
APPENDI	ICES			78

LIST OF FIGURES

Figure	Title	Pages
1.1	Project scope	3
2.1	Digimatic Electronic Safety Lockers	6
2.2	Mini Lok-All Keyless Locker	7
2.3	Aftek SpyGuard	8
2.4	Smarthome SecureLinc Wireless Home Security System	9
2.5	AlertMe ZigBee Smart Home Security System	10
2.6	Basic GSM network element	13
2.7	MicroC Compiler	17
2.8	Isis 7.5 Professional	18
2.9	ARES 7.5 Professional	20
2.10	PIC16F877A Microcontroller	22
2.11	GSM Modem	23
2.12	9 pins on DB9 COM port	24
3.1	Project methodology flow chart	28
3.2	General idea of project	31
3.3	Alphanumeric LCD (2x16)	33
3.4	LCD hardware connection (4-bit interface)	34
3.5	Keypad (4x3)	35
3.6	Connection keypad between microcontroller (port D)	36

LIST OF FIGURES

Figure	Title	Pages
3.7	Relay	37
3.8	EM Lock	38
3.9	GS35i GSM modem (Type: RS232)	39
3.10	ADC module of PIC16F877A	42
3.11	Interface circuit between PIC16F877A and GSM modem	45
3.12	Designing the security system	46
3.13	Circuit simulation	48
3.14	PCB layout in 2D view	49
3.15	PCB layout in 3D view	49
4.1	Initialization of the simulation	52
4.2	Door open if correct password inserted	53
4.3	Door close when door sensor been activated	54
4.4	Prototype of project	57
4.5	Design PCB layout	59
4.6	Bare board of PCB (a) top side (b) bottom side	60
4.7	PCB after soldering process (a) top side (b) bottom side	61
4.8	Locker with keypad, LCD, control circuit and GSM modem	62
4.9	Feeder pillar with keypad, LCD, magnetic lock, control	63
	circuit and GSM modem	

LIST OF TABLES

Table	Title	Pages
2.1	The comparison specifications of the security' products	11
2.2	Types of AT commands and response	16
2.3	RS232 pin assignment	25
3.1	Identification of components	30
3.2	LCD function and connection of each pin	34
3.3	Basic AT command syntax	40
3.4	I/O port assigned	43
3.5	Location of EEPROM in the software designing	44
4.1	Data storage simulation	51
4.2	Alert system simulation	55
4.3	Modification of components	58
4.4	Experimental result	65
4.5	Output torque for locker	67
4.6	Output torque for feeder pillar	67

LIST OF ABBREVIATIONS

ADC - Analog-to-Digital converter

ARES - Advanced Routing and Editing Software

AT - Attention

CMOS - Complement Metal Oxide Silicon

COM - Component Object ModeCPU - Central Processing Unit

EEPROM - Electrically Erasable Programmable Read-Only Memory

GPRS - General Packet Radio Service

GPS - Global Positioning SystemGSM - Global System for Mobile

IDE - Integrated Development Environment

I/O - Input or Output

LCD - Liquid Crystal Display
 LED - Light Emitting Diode
 PC - Personal Computer
 PCB - Printed Circuit Board

RAM - Random Access Memory
SMS - Simple Message Service
SMT - Surface Mount Technology

TTL - Transistor-Transistor Logic

USART - Universal Synchronous Receiver Transmitter

USB - Universal Serial Bus

LIST OF APPENDICES

Appendix	Title		
A	Automated Intelligent Drawer Security System Program	78	
В	Automated Intelligent Feeder Pillar Security System Program	91	

CHAPTER 1

INTRODUCTION

1.1 Project Background

The highest rate of crime cases reported on the newspaper or news report created a threat environment for public; thus, leave awareness to people around the world. Nothing is more important than the safety and protection especially to our family. So, as we can see nowadays, there are so many security products in the market with the priority to guard home whether they are home or leave home for vacation. The products mostly provide motion sensor, alarm system and are easy to use by subscribers.

This project will be designed to protect valuable property especially in the drawer or locker. The security system will help the user too easily to access their property and can set their desired personal code protection. It also helps on surveillance monitoring property and gives a signal to user if there are any attempts to steal valuables. As mankind dreams to live in a peaceful world, we always take steps in ensuring the safety of our families and property by taking the appropriate measures. Hence, we will prevent situations that can be life threatening to the society we are in.

1.2 Problem statement

We need to take some action to protect our property in preventing crime cases that can occur anytime and anywhere especially in our home. As we know, the security system will give optimum protection to valuable then help the families' members in safe condition. So, the problems to be studied are to build up a system that can protect our property if no one at home. The drawer or locker can be use to keep our valuable property safely. Even though, the system always monitor our property but if someone have broken up the drawer or locker, the trigger alert will be sent to us that our assets are unsafe. This security system is one of the user friendly products whereas easily to access and can set or reset their desired personal code protection.

1.3 Objectives of the project

The objectives of completing the project are based on:

- a) Identification of components
 - List out components for the project.
- b) Design software and simulate
 - Design the project's software using MicroC compiler.
- c) Design hardware and mechanical assembly
 - Design and preparations of components before assembled.
- d) Interface software and hardware
 - The combination of software and hardware parts.
- e) Analyze output and improve design
 - Analyze the system to fulfill the safety and security condition.

1.4 Scope of the project

The project's scope focuses more on the designing automatic lock system by using microcontroller. The size of drawer is 14 inches x 19 inches x 8 inches with aluminum type. The microcontroller as a brain system that guide the drawer or locker whereas its will control to open the door automatically with a correct code. Otherwise, its will trigger to owner if drawer had been broken up. Here the mobile communication (GSM) will be implementing to enhance the security system precisely. Figure 1.1 shown the project scope of this project.

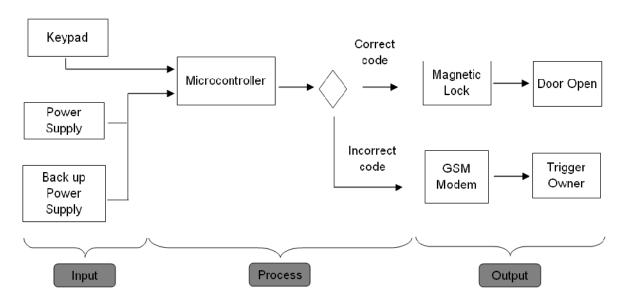


Figure 1.1: Project scope

1.5 Outlines of Progress Report

This thesis is prepared to explain in detail about the final year project which has been done through this semester. This project report consists of six chapters. The first chapter is discussing about the project background, problem statements, objectives and scope of the project. In second chapter, literature review will cover introduction of a security system which is done by a studies on five safety and security product. In addition, there are explanations of theory of Global System for Mobile Communications (GSM) includes software and hardware used in the project. The third chapter will cover the whole methodology that has been followed during implementation of this project. In fourth chapter will show and elaborate the result together with some result analysis. The general discussion of the whole result will be cover in fifth chapter. The last chapter was sixth chapter will highlight the important finding and conclusion for this project together with several recommendations for future work.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Analysis of the previous research of the related products will be discussed in a literature review. The purpose of these literature reviews is to expose the knowledge and general idea had been designed by each manufacturer' company concerned about security system. Hence, the research outcomes idea will be used for improving this project. It's also explained the software and hardware specifications briefly as references and guidelines to smooth the process of completing the project

2.2 Research about safety and security product

Under this project topic a lot of readings have studies to make this project become successful. Thereby, research had been done about a security system focusing only on home surveillance that covered five products as explained in the next section. The analysis's outcome will help to improve the automated-intelligent security system project.

2.2.1 Digimatic Electronic Safety Lockers

Apart from standard sizes, the manufacturer design and manufacture digimatic electronic safety lockers according to customers' specifications & requirements. This safety locker is safe and perfect for storing precious belongings such as cash, jewellery, documents in residences and commercial organizations. Figure 2.1 below show Digimatic Electronic Safety Lockers product.

Figure 2.1: Digimatic Electronic Safety Lockers

Here are some features of this product:

- a) Dual password operations by two persons
- b) Password selection through alpha-numeric keys max 9 characters
- c) Change of password facility
- d) 4th attempt = Alarm facility for 3 minutes followed by auto-freeze for 5 minutes
- e) Low battery indication external battery provided
- f) Non-volatile memory enables password retention even when the battery is removed

2.2.2 Mini Lok-All Keyless Locker

Mini Lok-All allows users to select their own personal code for access. It provides codes resettable system by each user usage. A keyless locker security system is provided with optional shelves. Keyless operation offers self-storage to users and a low maintenance system for operators. Management master keys are provided to easily open and resolve forgotten personal codes. Figure 2.2 below show Mini Lok-All Keyless Locker product.

Figure 2.2: Mini Lok-All Keyless Locker

2.2.3 Aftek SpyGuard

Aftek Spyguard is a small, simple, easy to use video, alarm, notification, all-inone security system. This product helps people to keep a watch on their home, office or shop while they are away. Figure 2.3 show Aftek SpyGuard product.