EFFECT OF TEMPERATURE ON THE MECHANICAL PERFORMANCE OF JOINTS BONDED WITH ELECTRICALLY CONDUCTIVE ADHESIVE

MOHAMMAD ZHARFAN BIN ZAIDI

A thesis submitted in fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this report entitles "Effect of Temperature On The Mechanical Performance of Joints Bonded With Electrically Conductive Adhesive" is the result of my own research except as cited in the reference. The report has not been accepted for any degree and is not concurrently submitted in candidature of any degree.

Signature	:	
Name	:	Mohammad Zharfan Bin Zaidi
Date	:	

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of Bachelor of Mechanical Engineering.

Signature	:	
Name	:	Dr. Mizah Binti Ramli
Date	:	

DEDICATION

This report work is dedicated to my beloved mother and father, whose has been support physically, emotionally and financially during the challenges to graduate school and life. I also truly thankful to my friends whose always helpful and been there to support and helped me. I am sincerely thankful for having you in my life.

ABSTRACT

An electrically conductive adhesive is glue which is used in method of joining and it's widely used in the electronic industry. An electrically conductive act as a medium for electric current to pass through them. The function of electrically conductive adhesive same as soldering process. However, due to the sensitivity of the electronic part to the temperature, the application of the electrically conductive adhesive is more compatible compared to the soldering process. There are a lot of factors that must be considered to design the adhesive joints. One of the factors is the effects temperature on the strength of the adhesive joints. In this study, the characteristic of the electrically conductive adhesive on the temperature was studied. In order to carry out this experiment, single lap joints of the specimen were used. The specimens were exposed to the room temperature, low temperature and high temperature. The specimens were tested using tensile test machine and the strength were of these three condition were compared. Then, the fractures of the specimens were examined using 3D Profilometer and the results of the degradation of the electrically conductive adhesive due to the temperature were compared.

i

ABSTRAK

"Electrically conductive adhesive" ialah sejenis gam yang mana digunakan dalam kaedah penyambungann dan digunakan secara meluas dalam industri elektronik. "Electrically conductive adhesive" akan bertindak sebagai satu medium untuk arus elektik lalu melepasi mereka. Fungsi "electrically conductive adhesive" adalah sama dengan proses pematerian. Walau bagaimanpun, disebabkan oleh bahagian elektonik yang sentsitif pada suhu, penggunaan "electrically conductive adhesive" dilihat lebih sesuai berbanding proses pematerian. Untuk mereka bentuk peyambungan gam, banyak faktor yang perlu dipertimbangkan. Salah satunya ialah kesan suhu keatas keatas penyambungan gam. Dalam pembelajaran ini, kesan suhu keatas ciri-ciri "electrically conductive adhesive" disiasat. Untuk menjalankan eksperimen ini, "single lap joints" specimen digunakan. Specimen-spesimen akan didedahkan kepada suhu bilik, suhu rendah dan suhu tinggi. Specimen-spesimen akan dibandingkan. Selepas itu, pematahan spesimen akan diuji menggunakan mesin ujian tegangan dan kekuatan specimen untuk ketiga- tiga keadaan akan dibandingkan.

ACKNOWLEDGEMENTS

First and foremost, I would like to thankful to Allah s.w.t for giving me a blessing to finish my PSM. I also would like to express my appreciation to Universiti Teknikal Malaysia Melaka especially Faculty of Mechanical Engineering for giving me an opportunity to conduct my PSM.

Furthermore, I would like to express my greatest appreciation to my supervisor, Dr. Mizah Binti Ramli for giving me support and guiding throughout my PSM. Not forgetting my deepest appreciation to my beloved family for supporting me physically, emotionally and financially throughout my study.

Last but not least, I would like to express my gratitude to master student in AMCHAL lab for giving permission and guiding me in order to conduct my experiment and finish my PSM.

TABLE OF CONTENTS

		PAGE
DEC	CLARATION	
DEI	DICATION	
ABS	STRACT	i
ABS	STRAK	ii
ACI	KNOWLEDGEMENTS	iii
TAI	BLE OF CONTENTS	iv
LIS	ST OF TABLES	vii
LIS	T OF FIGURES	ix
LIS	ST OF ABBREVIATIONS	xiii
LIS	ST OF APPENDICES	XV
CH	APTER	
1.	INTRODUCTION	1

		-
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Objective	3
1.4	Scope of Project	3
1.5	General Methodology	4

2.	LITI	TERATURE REVIEW		
	2.1	Introduction	7	
	2.2	Application of Adhesive At High and Low Temperature	7	
3.	MET	THODOLOGY	19	
	3.1	Introduction	19	
	3.2	Designing Jig	19	
	3.3	Printing Process	21	
	3.4	Preparation of the Substrate	22	
	3.5	Preparation of the Specimen	24	
	3.6	Characteristic of the Electrically Conductive Adhesive	26	
	3.7	Testing Method	27	
4.	RES	ULT AND DISCUSSION	29	
	4.1	Introduction	29	
	4.2	Design Jig to Bond Adhesive Joint	29	
	4.3	Analysis of the Tensile Test	37	
		4.3.1 Room Temperature Condition Without	37	
		Surface Treatment		
		4.3.2 Room Temperature Condition With	40	
		Surface Treatment		
		4.3.3 Low Temperature Condition	43	
		4.3.4 High Temperature Condition	51	
		4.3.5 Average Data of the Specimen	59	

5.	CONCLUS	ION AND RECOMMENDATION	63
	5.1	Conclusion	63
	5.2	Recommendation	64
	REFEREN	CES	65
	APPENDIX	A	69

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Failure Mode for Specimen Test	9
4.1	Shear strength of room temperature condition	37
	before surface treatment	
4.2	Surface roughness (Ra) value without surface treatment	38
4.3	Shear strength of room temperature condition	40
	with surface treatment	
4.4	Surface roughness (Ra) value with surface treatment	41
4.5	Shear strength of low temperature application at 6 $^\circ$	43
	for 10 hours	
4.6	Shear strength of low temperature application at 6 $^\circ$	45
	for 30 hours	
4.7	Shear strength of low temperature application at 6 $^\circ$ C	48
	for 50 hours	
4.8	Shear strength of high temperature application at 85 $^\circ$	51
	for 10 hours	
4.9	Shear strength of high temperature application at 85 $^\circ$	53
	for 30 hours	
4.10	Shear strength of high temperature application at 85 $^\circ$	56
	for 50 hours	

4.11	The average of the data and standard deviation	59
	for low temperature condition	
4.12	The average of the data and standard deviation	61
	for high temperature condition	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Flowchart of the methodology	5
1.2	Gant chart for PSM 1 project	6
2.1	Single lap joints (SLJs) specimen	10
2.2	Double Cantilever Beam (DCB) specimen	11
2.3	Side view of a chip package	12
2.4	Double strap joint specimen between CFRP and steel	13
2.5	A, B, C and D represent four electrical contact. B and C are	14
	for voltage measurement and A and D are for passing current, I	
2.6	Double lap shear joints for short term test and black areas	15
	indicate bonded areas	
2.7	Double lap shear joints for long term test and black areas	15
	indicate bonded areas	
2.8	Electrofusion joint schematic diagram	17
2.9	Double lap joints(DLJs) of the specimen	18
2.10	Double lap joints(DLJs) of the specimen	18
3.1	Drawing and dimension of the jig	20
3.2	(a) CUBEPRO 3D printing machine (b) ABS filament	22
	(c) Glue (d) Scraper (e) Jig	
3.3	Details dimension of the substrate	23

3.4	Salotape was applied	24
3.5	ECA was applied to the surface of the substrate	24
3.6	Razor blade was applied	24
3.7	Bonded joints of the specimen	25
3.8	(a) Resin (b) Hardener (c) Electrically conductive ink	26
3.9	Mixing process of resin, hardener and electrically conductive	26
	ink	
3.10	Tensile test machine	27
3.11	3D Profilometer	28
4.1	The dimension and specification of the specimen	29
4.2	Design 1	31
4.3	Broken jig	32
4.4	y-orientation of the jig	33
4.5	Bending jig	33
4.6	PLA material of the jig	34
4.7	Design 2	35
4.8	Perfect shape of the jig	36
4.9	Shear strength of three specimens for room temperature	38
	condition before the process of surface treatment.	
4.10	Topography of the specimen for room temperature	39
	condition before the process of surface treatment.	
4.11	Shear strength of three specimens for room temperature	41
	condition after the process of surface treatment	
4.12	Topography of the specimen for room temperature	42
	condition after the process of surface treatment	

4.13	Shear strength of three specimens for low temperature	44
	application at 6°C for 10 hours	
4.14	Topography of the specimen for low temperature	45
	application at 6°C for 10 hours	
4.15	Shear strength of three specimens for low temperature	46
	application at 6°C for 30 hours	
4.16	Topography of the specimen for low temperature	47
	application at 6°C for 30 hours	
4.17	Shear strength of three specimens for low temperature	49
	application at 6°C for 50 hours	
4.18	Topography of the specimen for low temperature	50
	application at 6°C for 50 hours	
4.19	Shear strength of three specimens for high temperature	52
	application at 85°C for 10 hours	
4.20	Topography of the specimen for low temperature	53
	application at 85°C for 10 hours	
4.21	Shear strength of three specimens for high temperature	54
	application at 85°C for 30 hours	
4.22	Topography of the specimen for low temperature	55
	application at 85°C for 30 hours	
4.23	Shear strength of three specimens for high temperature	57
	application at 85°C for 50 hours	
4.24	Topography of the specimen for low temperature	58
	application at 85°C for 50 hours	

4.25	Average data of lap shear strength for RT, 10, 30 and	60
	50 hours of specimen at 6 °C	
4.26	Average data of lap shear strength for RT, 10, 30 and	62
	50 hours of specimen at 85 °C	

LIST OF ABBREVIATIONS

ICA	Isotropic Conductive Adhesive	
SMD	Surface Monitoring Device	
ACA	Anisotropic Conductive Adhesive	
LCD	Liquid Crystal Display	
РСВ	Printed Circuit Board	
RFID	Radio Frequency Identification	
SLJs	Single Lap Joints	
RT	Room Temperature	
TAST	Thick Adherent Shear Test	
RTV	Room Temperature-Vulcanizing	
DMA	Dynamic Mechanical Analysis	
GFRP	Glass Fibre Reinforced Polymer	
AT	Ambient Temperature	
DCB	Double Cantilever Beam	
MW	Microwave	
ACF	Anisotropic Conductive Film	
DSC	Different Scanning Calorimetry	
EDS	Energy Dispersive Spectroscopy	
CFRP	Carbon Fibre Reinforced Polymer	
DLJs	Double Lap joints	

НТА	High Temperature Adhesive
LTA	Low Temperature Adhesive
СТЕ	Coefficient of Thermal Expansion
ABS	Acrylonitrile Butadiene Styrene
PLA	Polyactic Acid
ASTM	American Society for Testing and Materials
ECA	Electrically Conductive Adhesive

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Sample of specimens fractured after tensile test	70
A	Image analysis/Measurement software WinROOF 2015	71
	User's Manual	

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

An electrically conductive adhesive is glue which is widely used in electronic industry. An electrically conductive adhesive will act as a medium for electric current to pass through them. There are a lot of advantages why conductive adhesive is widely used in the industry instead of soldering processes. Based on the research, some of electronic parts cannot be soldered due to the sensitivity of temperature. Therefore, conductive adhesive is the best problem solving for electronic parts that sensitive to the temperature because it proves that the temperature of the soldering process is higher than conductive adhesive [1]. In addition, ability of conductive adhesive to withstand vibrations is better compared to the solder. Besides, conductive adhesive is more flexible and easy to use compared to the solder. Electrically conductive adhesive is divided into two types which is isotropic and anisotropic. Isotropic conductive adhesive (ICA) is define as the electrically conductive in all directions. For an example, isotropic is used for a chip contacting and bonding electrically conductive surface mounting device (SMD). Anisotropic conductive adhesive (ACA) are electrically conductive only in one direction and it's contain special conductive particles in the µm range. For an example, liquid crystal display (LCD) connection, contacting flexible printed circuit board (PCB) and bonding antenna structures on radio-frequency identification (RFID) are used anisotropic because they contain sensitive structure on circuit boards [2].

Adhesion usually used in method of joining. Adhesion tends to suffer from the degradation of the joint at elevated temperature and in water compared to the other method of joining, such as welding, brazing, soldering, and fastening. There are a lot of factors must be considered to design the adhesive joints. One of them is the effects temperature on the strength of adhesive joints. Therefore, in order to improve the temperature of adhesive joints, a lot of work has been made. Cure shrinkage, the coefficient of thermal expansion (CTE) and different adhesive mechanical properties are the most important factors to measure the strength of adhesive joint when it applied under extreme temperature range. However, due to polymeric nature of adhesives, generally the most significant factor must be consider to design bonded joint is the variation of the mechanical properties of the adhesives with temperature. At low temperature the high thermal stresses and the brittleness of the adhesive are the origin of such behaviour, while at high temperature the adhesive strength is low [3].

1.2 PROBLEM STATEMENT

Temperature is a significant factor that must been considered while designing and manufacturing adhesive joint because temperature can contribute a major effect to the electric circuit and adhesive joint. High temperature and heat has always been a problem to the electric circuit because it can lead to the damage circuit components. For an example, high temperature will lead to the overheating of the chip and melted the plastic casing of the chip. In addition, damage of adhesive forces between substrate, damage of adhesive layer and changing mechanical properties of adhesive glue may occur if there are any changes in environmental condition.

1.3 OBJECTIVE

The objectives of this project are as follows:

- 1. To investigate the mechanical properties of the adhesive joints under low temperature and high temperature.
- 2. To examine surface fracture of an adhesive joints taken by 3D Profilometer.

1.4 SCOPE OF PROJECT

The scopes of this project are:

- 1. This project is design according to the ISO standard of single lap joint. This project involved joining between two metals using an adhesive.
- 2. The changing of mechanical properties was observed and mechanical testing was conducted under high temperature and low temperature.

1.5 GENERAL METHODOLOGY

The actions that need to be carried out to achieve the objectives in this project are listed below.

1. Literature review

Journals, articles, or any material regarding the project will be reviewed.

2. Design specimen

Design specimen according to ISO standard of single lap joint.

3. Fabrication

The fabrication process will conducted at Makmal 2 Bahan Termaju. This process involved joining an adhesive joint according to ISO standard of single lap joint.

4. Experiment

Experiment will be presented on how the experiment of mechanical properties of an adhesive joint under high temperature and low temperature.

5. Analysis

Analysis will be presented on how to analyse the problem of an adhesive joint under high temperature and low temperature.

6. Report writing

A report on this study will be written at the end of the project.

Figure 1.1: Flow chart of the methodology.