

Faculty of Mechanical Engineering

GEOMETRIC OPTIMIZATION OF LED HEAT SINK FOR COOLING OF LED LIGHTING

Hor Woei Tsong

Bachelor of Mechanical Engineering with Honours

2018

C Universiti Teknikal Malaysia Melaka

GEOMETRIC OPTIMIZATION OF LED HEAT SINK

FOR COOLING OF LED LIGHTING

HOR WOEI TSONG

A thesis submitted

in fulfillment of the requirements for the Bachelor of Mechanical Engineering with Honours

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this project report entitled "Geometric optimization of the led heat sink for cooling of led lighting" is the result of my own work except cited in the references.

Signature	:
Name	: HOR WOEI TSONG
Date	:

SUPERVISOR'S APPROVAL

I hereby declare that I have read this project report and in my opinion, this report is sufficient in terms of scope and quality for the award of the Bachelor of Mechanical Engineering with Honours.

Signature	:
Name	: DR. CHENG SEE YUAN
Date	:

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Light Emitting Diode(LED) lighting is one of the well-known energy efficient and rapidly developing technologies. LED lighting has a longer lifespan, higher durability and better light quality if have a good cooling performance of heat sink. The purpose of this research is to optimize the geometry of heat sink without increasing production cost to achieve high performance of heat sink without using excessive materials. The experimental work of the study will be expensive. Therefore, software simulation Ansys version 16 was used to simulate the case study. In order to validate the simulation were correct, comparison of the experimental and numerical result was done. Once the difference between them was not huge, case study proceeded. After several case studies were done, it found out that reduce in fin thickness of heat sink and increased in height of fin of heat sink had the highest cooling performance of heat sink compared to the others. This is because reduce in fin thickness resulted the thermal boundary layer did not fully develop at an early stage. While increase in fin height resulted in a huge increase in surface area, therefore, heat transfer surface area greatly increased. This study will be used for geometry optimization of the heat sink with another shape.

ABSTRAK

Pencahayaan Diod Pemancar Cahaya (LED) merupakan salah satu teknologi yang cekap tenaga dan teknologi yang berkembang pesat. Pencahayaan LED mempunyai jangka hayat yang lebih panjang, ketahanan yang lebih tinggi dan kualiti cahaya yang lebih baik jika adanya penyejuk haba yang prestasi baik. Tujuan penyelidikan ini adalah untuk mengoptimumkan geometri sinki haba tanpa meningkatkan kos pengeluaran supaya mencapai prestasi sinki haba yang baik tanpa menggunakan bahan berlebihan. Oleh sebab kerja eksperimen kajian mahal. Oleh itu, simulasi perisian Ansys versi 16 digunakan untuk mensimulasikan kes kajian. Supaya pengesahan simulasi adalah betul, perbandingan keputusan eksperimen dan simulasi dilakukan. Sebaik sahaja perbezaan antara mereka tidak besar, kajian kes terus dijalankan. Selepas beberapa kajian kes dilakukan, ia mendapati bahawa mengurangkan ketebalan sirip sink haba dan peningkatan ketinggian sirip haba mencapai prestasi penyejukan yang paling tinggi daripada sinki haba yang lain. Ini disebabkan dengan mengurangkan ketebalan sirip sinki haba menyebabkan lapisan sempadan termal tidak sepenuhnya berkembang pada peringkat awal. Walaupun peningkatan ketinggian sirip menyebabkan peningkatan yang besar di kawasan permukaan. Oleh itu, kawasan permukaan pemindahan haba bertambah tinggi. Kajian ini akan berguna untuk mengoptimumkan geometri sinki haba yang berbentuk lain.

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep gratitude to my supervisor Dr. Cheng See Yuan from Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka for his support, encouragement and professional guidance during the entire period of final year project.

Special thanks go to the postgraduate student of Faculty of Mechanical Engineering, Mr. Jeffrey Hong and Miss Chin Kwang Yhee for sharing their pearls of wisdom during the period of final year project. My grateful thanks are also extended to my coursemate and my family for always support me and giving encouragement throughout the whole final year project

Last but not least, thanks to everyone who is involved in my final year project directly and indirectly for their help.

CONTENT

CHAPTER	CON	ITENT		PAGE
	DEC	LARAT	ION	i
	SUP	ERVISO	R'S APPROVAL	ii
	ABS	TRACT		iii
	ABS	TRAK		iv
	ACK	NOWLI	EDGMENTS	v
	ТАВ	LE OF (CONTENT	vi
	LIST	r of fic	GURES	viii
	LIST	OF TA	BLES	xi
	LIST	OF AB	BREVIATIONS	xii
	LIST	r of sy	MBOLS	xiii
CHAPTER 1	INT	RODUC	ΓΙΟΝ	1
	1.1	Backg	round	1
	1.2	Proble	m Statement	2
	1.3	Object	ive	3
	1.4	Scope	Of Project	3
CHAPTER 2	LITI	ERATUF	RE REVIEW	4
	2.1	LED H	leat Sink	4
		2.1.1	Shape of Heat Sink	4
		2.1.2	Material of Heat Sink	6
	2.2	Natura	l Convection	9
	2.3	Geome	etric Optimization of Heat Sink	10
		2.3.1	Geometric Parameter Height of Fins	14
		2.3.2	Geometric Parameter Length of Fins	19
		2.3.3	Geometric Parameter Thickness of Fins	22
	2.4	Numer	ical Methods	22

CHAPTER 3	MET	HODOLOGY	24
	3.1	Introduction	24
	3.2	Geometry Drawing	26
	3.3	Parameter of Optimization	27
	3.4	Boundary Conditions	28
	3.5	Physical Properties	28
	3.6	Simulation Software	29
	3.7	Meshing	29
	3.8	Governing Equations	30
	3.9	Fluent or Solver (CFD)	31
	3.10	Verification	33
		3.10.1 Grid Dependency Test	33
		3.10.2 Comparison of Turbulence Models	34
	3.11	Validation	35
	3.12	Simulation with Case Study	36
CHAPTER 4	RESU	ULT AND DISCUSSION	37
	4.1	Introduction	37
	4.2	Geometric Parameter : Height of Fin	37
	4.3	Geometric Parameter : Length of Fin	39
	4.4	Case Study 1 : Thermal Resistance Versus	42
		Height of Fin With Fixed Mass	
	4.5	Case Study 2 : Thermal Resistance Versus	46
		Thickness of Fin With Fixed Mass	
CHAPTER 5	CON	CLUSION AND RECOMMENDATIONS	54
	REFI	ERENCE	56

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	L Type Model	5
2.2	LM Type Model	5
2.3	Thermal Conductivity vs Electrical Resistivity for Different Class of Materials	7
2.4	Thermal Expansion vs Young Modulus for Different Class of Materials	8
2.5	General Flow Pattern of Natural Convection	10
2.6	Heat Sink With Concentric Ring	11
2.7	Heat Sink With Perforation Ring	12
2.8a	L Type Model	13
2.8b	LM Type Model	13
2.8c	LMS Type Model	13
2.9	Height of Fins	14
2.10	The Effect of The Fin Height	15
2.11a	LM Plate Fin Type	15
2.11b	Pin Fin Array With The Tallest Fins On The Inside(Type 1)	16
2.11c	Pin Fin Array With The Tallest Fins On The Outside(Type 2)	16
2.12a	Temperature Contours for LM Plate Fin Model	17

2.12b	Temperature Contours for Pin Fin Array With The Tallest Fins On The Inside	17
2.12c	Temperature Contours for Pin Fin Array With The Tallest Fins On The Outside	17
2.13	Parameter of Length Fin	19
2.14	Effect of The Fin Length	20
2.15	Effect of Long Fin Length	21
2.16	Effect of Middle Fins Length	21
2.17	The effect of the fin thickness	22
2.18	Comparison of Experiment Result and Numerical Result	23
3.1	Flow Chart of The Methodology	25
3.2a	Side View of Heat Sink Along With Hollow Cylinder	26
3.2b	Top View of Heat Sink Along With Hollow cylinder	26
3.3	Boundary Condition of Heatsink	28
3.4	Three Section of Different Quality Mesh of Heat Sink	29
3.5	Effect of Mesh Size Toward Thermal Resistance	34
3.6	Validation Result	35
4.1	Effect of Fin Height Toward Thermal Resistivity	38
4.2a	Temperature contour of heat sink of height of fin 10mm	38
4.2b	Temperature contour of heat sink of height of fin 20mm	39
4.3	Effect of long fin length toward thermal resistance	40
4.4a	Temperature Contour of Long Fin Length of 40mm	41
4.4b	Temperature Contour of Long Fin Length of 30mm	41
4.5	Effect Of Height Of Fin Toward Thermal Resistance	43

4.6a	Temperature Contour Length Of Fin 40/20mm	44
4.6b	Temperature Contour Length Of Fin 16/8mm	44
4.7a	Velocity Contour Length Of Fin 40/20mm	45
4.7b	Velocity Contour Length Of Fin 16/8mm	45
4.8	Surface Area of Fin Toward Thermal Resistance	46
4.9	Effect of Thickness of Fin Toward Thermal Resistance	47
4.10a	Plane of Wall Fluid for Temperature Contour	48
4.10b	Temperature Contour Of Heat Sink For Fin Thickness Of 1mm(wall fluid)	48
4.10c	Temperature Contour Of Heat Sink For Fin Thickness Of 2mm(wall fluid)	49
4.10d	Temperature Contour Of Heat Sink For Fin Thickness Of	49
4 1 1	6mm(wall fluid)	50
4.11a	Temperature Contour Of Heat Sink For Fin Thickness Of 1mm(y=8mm)	50
4.11b	Temperature Contour Of Heat Sink For Fin Thickness Of 2mm(y=8mm)	51
4.11c	Temperature Contour Of Heat Sink For Fin Thickness Of 6mm(y=8mm)	51
4.12a	Velocity Contour Of Heat Sink For Fin Thickness Of	52
	1mm(y=8mm)	
4.12b	Velocity Contour Of Heat Sink For Fin Thickness Of	52
4 1 2	2mm(y=8mm)	52
4.12c	Velocity Contour Of Heat Sink For Fin Thickness Of	53
1 12	6mm(y=8mm) Surface Area of Fin Toward Thermal Resistance	52
4.13	Surface Area of Fill Toward Thermal Resistance	53

LIST OF TABLES

TABLES	TITLE	PAGE
2.1	Condition of Material Selection	6
2.2	Second Condition of Material Selection	7
2.3	Mechanical Properties of Aluminium Alloys	7
2.4	Comparison of Various Fin Height Profile	18
2.5	Simulation Result of Changing Fin Height	18
3.1	Geometry Parameters of The Reference Heat Sink	26
3.2	Properties of Air and Aluminium	28
3.3	Initial Setting For Under Relaxation Factors	32
3.4	Grid Dependency Test	33
3.5	Thermal Resistivity Of Different Turbulence Model	34
4.1	Effect Of Height Of Fin	39
4.2	Effect Of Length Of Fin	41
4.3	Numerical Analysis of Case Study 1	42
4.4	Numerical Analysis For Case Study 2	46

LIST OF ABBREVATIONS

- L Long
- LM Long Middle
- LMS Long Middle Small
- CFD Computational Fluid Dynamics

LIST OF SYMBOL

R_{th}	=	Thermal Resistance (°C/W)
h	=	Heat Transfer Coefficient
Η	=	Height Of Fins (mm)
θ	=	Degree
А	=	Surface Area (mm ²)
'n	=	mass flow rate (kg/s)
λ	=	Thermal Conductivity (W/m.K)
Е	=	Young's Modulus
α	=	Electrical Resistivity, $(\mu \Omega.Cm)$
Ср	=	Specific Heat Capacity (H/g.ºC)
ρ	=	Density
t	=	Thickness (mm)
ġ	=	Heat Flux (W/m ²)
Р	=	Pressure (Pa)
r	=	Radius (mm)
Т	=	Temperature (°C)
М	=	Mass (kg)
L	=	Length (mm)
u	=	x-component of velocity (m/s)
V	=	y-component of velocity (m/s)
W	=	z-component of velocity (m/s)
g	=	Gravity (m/s ²)
μ	=	Dynamic viscosity (N/m ² s)
ref	=	reference
ave	=	average
0	=	outer
i	=	inner
1	=	long
m	=	middle

- ∞ = ambient
- f = fins

CHAPTER 1

INTRODUCTION

1.1 Background

Light- Emitting Diode (LED) is one of the well-known energy-efficient and rapidly- developing technologies. LED lighting has a longer lifespan, higher durability and better light quality compared to incandescent lighting and other types of lighting. Although LED lightings do have a lot of advantages, it still faces the issue of heat. Heat produced by the led lighting will cause failure toward LED lighting.

Heat is the greatest enemy of LED technology (Victor, 2015). Heat brings failure or drop of performance for LED. While the failure included light output decreased permanently due to the damage was done by the heat toward LED, the color temperature of the white LED changed and etc. This failure because of materials used in the LED unable to withstand high temperature. To prevent LED lighting from overheating, a heat sink for led lighting must be applied.

Without a good heat sink, the internal temperature of LED lighting increases causing to failure. With the increase of internal temperature of a LED, voltage and lumen output of the LED decreases. With the characteristic changed, brightness and efficiency as well as an overall lifetime of LED decreased. Internal temperature of LED high lead to faster LED deterioration. This is why it is important to make sure internal temperature of LED remains low. (Taylor Scully, 2015)

There were several challenges in heat dissipation of LED lighting using a heat sink. The heat sink is a cylinder with longitudinal fins that usually applied in LED light bulbs. With a suitable design of heat sink, it will bring out the most effective on heat dissipation of LED lighting. Which will greatly reduce the overheated of LED lighting that will cause a reduction in the performance of lighting?

Due to competitive of LED lighting in the market, LED lighting industry required to develop innovative, low-cost conductive and convection heat sink to make sure LED lighting performance last longer.

1.2 Problem Statement

With the incandescent light is fading away, LED light is taking the sports light of the current market. However, LED light bulb is facing a problem when dealing with heat dissipation due to its limitation of internal temperature that causes a drop in performance. In order to reduce the internal temperature of LED light, heatsink was applied. Although heat sink will reduce the internal temperature of LED light, heat sinks are expensive in the market. In order for the manufacturer to provide an efficient heat sink with same price. Without excessive usage of materials, optimization of the design of heat sink should be done without increasing the cost of production.

1.3 OBJECTIVE

The objectives of this project are as follows:

- To analyze the differences in geometry of heat sink like height of fin, length of fin and thickness of fin of the heat sink effect on its conjugate heat transfer by performing simulation under natural convection.
- 2. To provide an improved heat sink performance after optimization of geometry without an increase in mass.

1.4 Scope of Project

The scopes of this project are:

- 1. Geometry optimization of LED heat sink only focuses on the radial heat sink.
- 2. Simulation geometry changes of the LED heat sink without an increase in mass
- 3. Radiative heat transfer at the heat sink is negligible.

CHAPTER 2

LITERATURE REVIEW

2.1 LED Heat Sink

Light Emitting Diode (LED) lightings replaced by conventional lighting devices which provide higher efficiency, longer life and small in size. A lifetime of LED will be reduced if did not apply heat sinks with the main purpose of cooling LEDs (Kwak et. al. 2017). Similar to (Park et. al. 2016), stated thermal dissipation structure needed to assure long life and efficiency of LED lamp.

2.1.1 Shape of Heat Sink

According (Yu et. al. 2010) stated that majority of studies related to rectangular bases of heatsinks did not produce a significant result for cooling circular LED lights. Therefore, a radial heat sink with circular base and rectangular fins were studied. There was three types model of heat sink (Yu et. al. 2011) studied which were L type model, LM type model and LMS type model. LM type model showed the most efficient in heat dissipation in the result. Figures below show L type model and LM type model of heat sink.

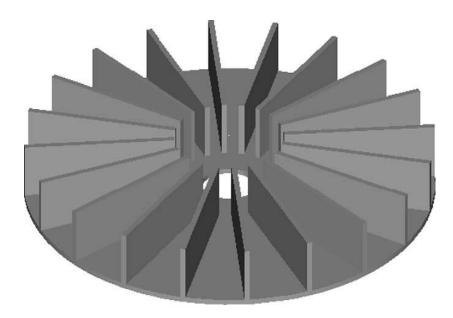


Figure 2.1 : L type model (Yu et. al, 2011).

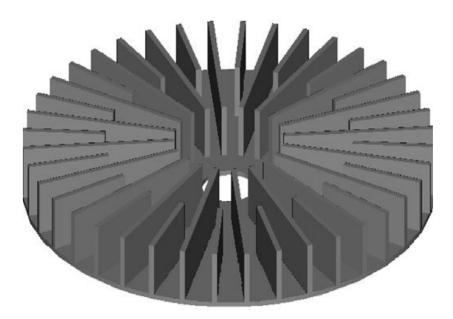


Figure 2.2 : LM type model (Yu et. al, 2011).

2.1.2 Material of Heat Sink

According to J.Padmaja & A. Ravindra (2015), selection of material heat sink is important in the conduction of heat from the heatsink. According to G. Prashant Reddy & Navneet Guptal, (2010) studies, the high thermal conductivity of the material used for heat sink, the faster the heat dissipation to the surrounding. There was three cases study specified by them.

Table 2.1 : Condition of material selection (G. Prashant Reddy & Navneet

Gupta1, 2010)

Case 1 :

Function	Heat Sink
Constraints	(1) Material must have $\rho_e > 10^{19} \mu \Omega \ cm$
	(2) All dimensions specified
Objective	Maximize thermal conductivity
Free Variables	Choice of material

Based on condition, a graph in figure 2.3 was formed. The graph showed that Aluminum Nitride (AIN) or Alumina (Al₂O₃) satisfied the condition.

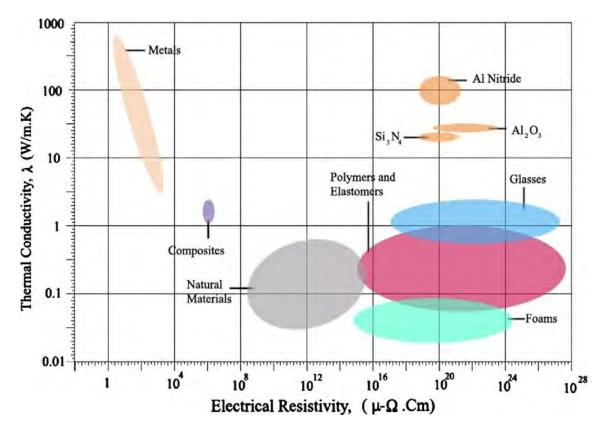


Figure 2.3 : thermal conductivity vs electrical resistivity for different class of materials

(G. Prashant Reddy & Navneet Gupta1, 2010)

Table 2.2 : Second Condition of material selection (G. Prashant Reddy &

Navneet Gupta1, 2010)

Case 2:

Function	Heat Sink
Constraints	(1) The temperature of material used in heat sink increase, thermal expansion decrease
	(2) High electrical resistivity
	(3) High value of Young's Modulus, thermal expansion must be significant
Objective	(1) Maximize Young's Modulus(2) Heat Transfer Coefficient increase, temperature increase