FEASIBILITY STUDY AND REDESIGN FEW MODULES OF THE EXISTING FIRE FIGHTING MACHINE

NOOR ZAIEDURRA IRDAWATIE BT NORDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FEASIBILITY STUDY AND REDESIGN FEW MODULES OF THE EXISTING FIRE FIGHTING MACHINE

NOOR ZAIEDURRA IRDAWATIE BT NORDIN

This report is submitted to the Faculty Mechanical Engineering in partial to fulfill the requirement for Bachelor Mechanical Engineering (Design and Innovation)

FACULTY OF MECHINCAL ENGINEERING UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MAY 2009

C Universiti Teknikal Malaysia Melaka

"I verify that, I have read this report and from my opinion this thesis have fulfill the scope and quality requirement for Bachelor Mechanical Engineering (Design and Innovation)"

Signature	:
Name of Supervisor	:
Date	:

"I hereby declared that this report is a result of my own work except for the works that have been cited clearly in the references."

Signature:Name: Noor Zaiedurra Irdawatie Bt NordinDate:

My parents, family, supervisor and friends.

ACKNOWLEDGEMENT

First and foremost, my greatest gratitude to ALLAH S.W.T for giving me strength and opportunity to complete this report.

I would like to extend my appreciation to En. Masjuri B. Othman for his continuous support, concern, positive criticism and invaluable advice that help me a lot throughout this project. Special recognition to all of every single person that helps me in my way to finish up my project during my time having problem and difficulties.

Finally, thank you to all individuals and groups who made this project as an exciting education period but are not being mentioned here.

ABSTRAK

Projek ini bertujuan untuk menghasilkan rekabentuk-rekabentuk terbaik bagi memenuhi aspek-aspek rekabentuk yg perlu pada mesin melawan kebakaran yg telah sedia ada di Universiti Teknikal Malaysia Melaka (UTeM). Projek ini merangkumi kajian terhadap rekabentuk yg sempurna untuk mesin tersebut bagi setiap komponen bahagian yang telah di kenal pasti. Ia adalah satu proses penambahbaikan dari segi keselamatan mesin tersebut. Rekabentuk Morfologi dijanakan bagi mendapat konsep-konsep rekabentuk yang sesuai bagi setiap komponen bahagian yang telah di kenal pasti. Bagi mendapatkan rekabentuk terbaik bagi mesin ini, kaedah pemberat digunakan bagi memastikan rekabentuk tersebut adalah terbaik di kalangan semua rekabentuk konsep yang telah diilhamkan. Melalui rekabentuk yang telah dipilih, rekabentuk teperinci akan dijanakan. Analisis akan dijalankan terhadap rekabentuk yang telah dipilih melalui kaedah pemberat.Selepas analisis dijalankan, keputusan akan diperolehi.

ABSTRACT

This project aim is to generate the best design to fulfill the design requirements on the existing fire fighter machine that created by Universiti Teknikal Malaysia Melaka (UTeM). This project includes the study on the design that suitable for the existing fire fighter machine on the safety requirement. The designs are intended to improve the function of the machine on safety side. Morphology design were made to create the appropriate design concepts of the parts component that been identified. Weighted-Rating method been used to evaluate the entire designs. Detail design will be specified and the analysis on the champion design is made. After the potential designs are choose, several analyses will be carried out on the design. The analysis will shown the result that produce from the analysis.

TABLE OF CONTENT

CHAPTER TITLE

PAGE

DECLARATION	ii
DEDICATION	iv
ACKNOWLEDGEMENT	V
ABSTRAK	vi
ABSTRACT	vii
TABLE OF CONTENT	viii
LIST OF TABLE	xiii
LIST OF FIGURE	xiv
LIST OF APPENDIXES	xix
ABBREVIATION	XX

1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	2
1.3	Purpose	3
1.4	Objectives of project	3
1.5	Scopes of project	4

LITERATURE REVIEW

2.0	Introduction	5
2.1	Fundamentals of System Safety	5
2.2	System Safety Fundamentals	10
2.3	Fire	16
2.4	Fire Fighter	19
2.5	Fire Fighting/ Fire Apparatus	21
2.6	OSH Legislation and Its Implementation	25
2.7	Occupational Accident and Diseases Statistics	27
2.8	OSH Profile in Various Sectors	40
2.9	Existing Firefighting Machine	44
2.8	Machine that need improvement (The existing	47
	Prototype Fire Fighting Machine)	

3

2

METHODOLOGY

3.0	Introduction	48
3.1	Problem Statement	49
3.2	Literature Riview	50
3.3	Conceptual Design	50
3.4	Detail design	50
3.4.1	Part Drawing	51
3.4.2	Assembly Drawing	51
3.4.3	Exploded Drawing	51
3.5	Analysis and Discussion	52
3.5.1	Analysis Flow	52
3.6	Final Design	53

MORPHOLOGY

4

4.0	Introduction	54
4.1	Morphology for Control Panel Drawer	55
4.2	Morphology for Battery Drawer	56
4.3	Morphology for Pipe Connection	57
4.4	Morphology for Impact Absorber	58
4.5	Morphology for Motor Compartment	59

5 CONCEPTUAL DESIGN

5.0	Introduction	60
5.1	Weighted Rating Method	64
5.1.1	Control Panel Drawer	65
5.1.2	Battery Compartment	67
5.1.3	Pipe Connection	69
5.1.4	Impact Absorber	70
5.1.5	Motor Compartment	71
5.1.6	Concepts Sketches	73
5.2	Ergonomics	80
5.3	Robust Design	80
5.4	Conclusion	80

DETAIL DESIGN

6

6.0	Introduction	81
6.1	Control Panel Drawer	82
6.1.1	Materials used for Control Panel Drawer	82
6.2	Battery Compartment	83

6.2.1	Materials used for Battery Drawer	83
6.3	Pipe Connection	84
6.3.1	Materials used for Pipe Connection	84
6.4	Impact Absorber	85
6.4.1	Materials used for Impact Absorber	85
6.5	Motor Compartment	87
6.5.1	Materials used for Motor Compartment	87

7 ANALYSIS AND DISCUSSION

7.0	Introduction	88
7.1	Result of CosmosWork's Analysis	89
7.2	Calculation and Formulation	121
7.3	Discussion	128

8 FINAL DESIGN

8.0	Introduction	131
8.1	Control Panel Drawer	132
8.1.1	Assembly Drawing	132
8.2	Battery Compartment	133
8.2.1	Assembly Drawing	133
8.3	Pipe Connection	134
8.3.1	Assembly Drawing	134
8.4	Impact Absorber	135
8.4.1	Assembly Drawing	135
8.5	Motor Compartment	136
8.5a	Motor Cover	136
8.5b	Floor Trap	137

9.0	Conclusion	138

REFERENCES	140
APPENDIXES	142

LIST OF TABLES

- Table 2.1:Employment Patterns in Malaysia
- Table 2.2:Malaysia Gross Domestic Products, 2000
- Table 2.3:Malaysia Total Export by Sectors, 2000
- Table 2.4:List of Regulations under the FMA 1967.
- Table 2.5: The regulation by OSHA 1994.
- Table 2.6:
 Guidelines and Code of Practices made under OSHA 1994
- Table 2.7:Total Number of Notices of Improvement/Prohibition and ProsecutionIssued by DOSH.
- Table 7.1:
 The materials that applied on the control panel drawer
- Table 7.2:
 The materials for Motor Compartment that applied in the analysis

LIST OF FIGURE

- Figure 2.1: Relative relationship of system safety tasks to life cycle phases for a simple system
- Figure 2.2: System Safety Working Group
- Figure 2.3: Flames contain high-proof spirits which are ignited prior to consumption
- Figure 2.4: Fire tetrahedron
- Figure 2.5: Building in Fire and fire fighter try to save it
- Figure 2.6: A burning building casts off clouds of smoke.
- Figure 2.7: 2.7(a) and 2.7(b) shows that a Ladder truck and a Bronto Hydraulic Platform
- Figure 2.10: Fire Engine in the US (a), London (b), and Malaysia (c)
- Figure 2.11: 2.11(a) and 2.11(b) shows that the fire fighting machine that invented by others with different mechanism and application.

Figure 2.12 (a): Jelka Heavy-4 Medium Firefighting machine

Figure 2.12 (b): Jelka-10 Heavy Firefighting Machine.

- Figure 2.13: The specification of Jelka Heavy-4 Medium and Jelka-10 Heavy
- Figure 2.14: The existing prototype fire fighting machine

- Figure 3.1: Methodology flow of the project
- Figure 4.1: Morphology Chart of Control Panel Drawer
- Figure 4.2: Morphology of Battery Drawer
- Figure 4.3: Morphology of Pipe Connection
- Figure 4.4: Morphology of Impact Absorber
- Figure 4.5: Morphology Chart of Motor Compartment
- Figure 5.1: Weighted Rating for Control Panel Drawer (concept 1 concept 3)
- Figure 5.2: Weighted Rating for Control Panel Drawer (concept 4 concept 6)
- Figure 5.3: Weighted Rating for Battery Compartment (concept 1 concept 3)
- Figure 5.4: Weighted Rating for Battery Compartment (concept 4 concept 6)
- Figure 5.5: Weighted Rating for Pipe Connection (concept 1 and concept 2)
- Figure 5.6: Weighted Rating for Impact Absorber (concept 1 concept 3)
- Figure 5.7: Weighted Rating for Impact Absorber (concept 4 concept 6)
- Figure 5.8: Weighted Rating for Motor Compartment (concept 1 concept 3)
- Figure 5.9: Weighted Rating for Motor Compartment (concept 4 concept 6)
- Figure 5.10(a), 5.10(b), 5.10(c), 5.10(d), 5.10(e), and 5.10(f) shown above are the conceptual design sketches of Control Panel Drawer
- Figure 5.11(a), 5.11(b), 5.11(c), 5.11(d), 5.11(e), and 5.11(f) shown above are the conceptual design sketches of Battery Compartment Drawer
- Figure 5.12(a) and 5.12(b) shown above are the conceptual sketches of Pipe Connection
- Figure 5.13(a), 5.13(b), 5.13(c), 5.13(d), 5.13(e), and 5.13(f) as above shown the conceptual design sketches of Impact Absorber
- Figure 5.14(a), 5.14(b), 5.14(c), 5.14(d), 5.14(e), and 5.14(f) as shown above are the conceptual design sketches of Motor Compartment

- Figure 6.1: Layout of Control Panel Drawer
- Figure 6.2: Layout of Control Panel Drawer Insulator
- Figure 6.3: Layout of Control Panel Drawer Hinge
- Figure 6.4: Layout of Control Panel Drawer Glass Door
- Figure 6.5: Layout of Control Panel Drawer Screw
- Figure 6.6: Layout of Assembly View for Control Panel Drawer
- Figure 6.7: Layout of Exploded View for Control Panel Drawer
- Figure 6.8: Layout of Battery Drawer Base
- Figure 6.9: Layout of Battery Drawer Upper
- Figure 6.10: Layout of Bearing
- Figure 6.11: Layout of Assembly View for Battery Drawer
- Figure 6.12: Layout of Exploded View for Battery Drawer Base
- Figure 6.13: Layout of The Pipe Connection Chain
- Figure 6.14: Layout of The Pipe Connection Flange
- Figure 6.15: Layout of Assembly View for The Pipe Connection
- Figure 6.16: Layout of Exploded View for The Pipe Connection
- Figure 6.17: Layout of Impact Absorber Base
- Figure 6.18: Layout of Impact Absorber Spring
- Figure 6.19: Layout of Impact Absorber Stopper
- Figure 6.20: Layout of Impact Absorber Cover
- Figure 6.21: Layout of Impact Absorber Screw
- Figure 6.22: Layout of Impact Absorber Insulation
- Figure 6.23: Layout of Assembly View for Impact Absorber Base
- Figure 624: Layout of Exploded View for Impact Absorber Base
- Figure 6.25: Layout of Motor Compartment Floor Trap Base

- Figure 6.27: Layout of Motor Compartment Motor Cover Base
- Figure 6.28: Layout of Motor Compartment Motor Cover
- Figure 6.29: Layout of Assembly View for Motor Compartment Motor Cover
- Figure 6.30: Layout of Assembly View for Motor Compartment Floor Trap
- Figure 6.31: Layout of Exploded View for Motor Compartment Motor Cover
- Figure 6.32: Layout of Exploded View for Motor Compartment Floor Trap
- Figure 7.1: The thermal analysis of Control Panel Drawer
- Figure 7.2: Stress analysis of Battery Drawer (Upper)
- Figure 7.3: Displacement Analysis of Battery Drawer (Upper)
- Figure 7.4: The Strain analysis of Battery Drawer (Upper)
- Figure 7.4: The Stress (Von Mises) analysis of Battery Drawer (Upper)
- Figure 7.5: Stress analysis of Battery Drawer (Based)
- Figure 7.6: Displacement Analysis of Battery Drawer (Based)
- Figure 7.7: The Strain analysis of Battery Drawer (Based)
- Figure 7.8: The Stress (Von Mises) analysis of Battery Drawer (Based)
- Figure 7.9: The stress analysis of The Flange
- Figure 7.11: Displacement analysis of The Flange
- Figure 7.12: The Strain analysis of The Flange
- Figure 7.13: The Stress (Von Mises) analysis of The Flange
- Figure 7.14: The stress analysis of The Chain
- Figure 7.15: Displacement analysis of The Chain

- Figure 7.16: The Strain analysis of The Chain
- Figure 7.17: The Stress (Von Mises) analysis The Chain
- Figure 7.18: The stress analysis of The Base
- Figure 7.19: Displacement analysis of The Base
- Figure 7.20: The Strain analysis of The Base
- Figure 7.21: The Stress (Von Mises) analysis of The Base
- Figure 7.22: The stress analysis of The Stopper
- Figure 7.23: Displacement analysis of The Stopper
- Figure 7.24: The Strain analysis of The Stopper
- Figure 7.25: The Stress (Von Mises) analysis of The Stopper
- Figure 7.26: The analysis result of floor trap
- Figure 7.27: The analysis of Motor Cover
- Figure 8.1: Control Panel Drawer
- Figure 8.2: Battery Drawer
- Figure 8.3: Pipe Connection
- Figure 8.4: Impact Absorber
- Figure 8.5: Motor Cover
- Figure 8.6: Floor Trap of Motor Compartment

LIST OF APPENDIXES

- Appendix 1 Fire Classification
- Appendix 2 Table 2.9 and Figure 2.19
- Appendix 3 Industrial Accident
- Appendix A Catalogs
- Appendix B Table of materials Properties
- Appendix C Gantt Chart for PSM I and PSM II

ABBREVIATION

FKM	Fakulti Kejuruteraan Mekanikal
OSHA	Occupational Safety & Health Act 1994
NIOSH	National Institute of Occupational Safety and Health
SHO	Safety and Health Officer
CIMAH	Control of Industrial Major Accident Hazards
USECHH	Standard of Exposure of Chemical Hazardous to Health
DOSH	Department of Occupational Safety and Health
UTeM	Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Background

'Projek Sarjana Muda' (PSM) is a compulsory for all student of UTeM in order to obtain a degree in the engineering field. From the PSM, every student will apply their subject learned from the classes into the final project. There are many applications that have to do such as theoretical, experimental, analysis, design and so on. Objective of this project is to produce professional and efficient graduate to complete engineering problem by literature and scientific study through research approach and development and through application of knowledge were studied and knowledge from some other field those concerning.

Firefighters are rescuers extensively trained primarily to put out hazardous fires that threaten civilian populations and property to rescue people from car accidents, collapsed and burning buildings and other such situations. Some of the situation, there needs tools in rescuing people and saving the properties. Fire fighting machine is one of the solution that available in the market. Several problems that encounter in the existing fire fighting machine is the system not efficiently works and helping in the real situation.. Fire fighting machine is usually used to reduce the flame of fire. For the existing fire fighting machine, its can be applied in the small burning building and not for a large burns. This project is purposely to improve the existing fire fighting machine in order to redesign and study the feasibility of the machine. There need to have several solutions in improving the product. By applied the design knowledge, a new and efficient fire fighting machine can be produced.

1.2 Problem Statement

There are several problems that occur while testing and maintaining the existing fire fighting machine which created by UTeM and joint venture of a company in Langkawi. Some of the problems occurred were:

1.2.1 Pipe Connection

In the safety order, the pipe connection loaded with high water pressure. In this particular case, safety precaution should be taken, if the connection is suddenly unplugged due to these high water pressures.

1.2.2 Impact Absorber

In the existing of fire fighting machine, the nozzle will give a high impact and sound to the stopper when it goes down. The objective of improving this part is to reduce the sound after the nozzle hit the stopper.

1.2.3 Control Panel Drawer

For this part, the problem that may occur is the electrical and electronic parts might expose to the short circuit because the possibility of the water entering the compartment is high. Since the electrical and electronics compartment is difficult to view, therefore it is hard to detect if these problems occurred.

1.2.4 Battery Compartment

The purpose of improving the battery compartment is because the existing battery compartments have the difficulty while maintaining the batteries. There should have few options in servicing the batteries.

1.2.5 Motor Compartment

This compartment has the problem while the machine is operating. The water will flood to this compartment and it wills consequence to the damages of the motor if the water traps continuing to happen.

These problems need a new improvement to be designed that suitable for the system of the existing fire fighting machine which then can be applied on the real situation.

1.3 Purpose

The aim of this project is to improve and redesign a few modules of the existing fire fighter machine.

1.4 Objective

The objectives are to improve few modules of the fire fighting machine especially on the new design for few modules and analyze every part that has been improved.