COIN ANTENNA DESIGN

NUR FAISYA BINTI KHAIRUL NURIAL SAID

This Report is Submitted in Partial Fulfillment of Requirements for the Bachelor Degree of Electronic Engineering (Telecommunication)

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

April 2010

C Universiti Teknikal Malaysia Melaka

	U NIVERSTI TEKNIKAL MALAYSIA MELAKA JURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER borang pengesahan status laporan PROJEK SARJANA MUDA II			
Tajuk Projek : COIN ANT	TENNA DESIGN			
Sesi Pengajian : 2009/2010)			
 Saya NUR FAISYA BINTI KHAIRUL NURIAL SAID mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi. 4. Sila tandakan (√): 				
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)			
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)			
TIDAK TERHAD				
	Disahkan oleh:			
(TANDATANGAN PENU Alamat Tetap:	ULIS) (COP DAN TANDATANGAN PENYELIA)			
98, JLN DESA JAYA 3, TMN DESA JAYA, 34600 KAMUNTING, PERAK.				
Tarikh: 30 April 2010	Tarikh:			

"I hereby declare that this report is result of my own effort except for works that have been cited clearly in the references."

Signature	:
Author	: Nur Faisya Binti Khairul Nurial Said
Date	: 30 April 2010

iii

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the Bachelor Degree of Electronic Engineering (Telecommunication)"

Signature	:
Supervisor's Name	: Encik Mohamad Zoinol Abidin Bin Abd Aziz
Date	:

To my beloved father, mother, and to all my siblings and friends.

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

First of all, I am most grateful to Almighty ALLAH s.w.t. for blessing me with good health and ideas for completing this "Projek Sarjana Muda" successfully. I would like to show my highest gratitude to my supervisor, Encik Mohamad Zoinol Abidin Bin Abd Aziz for his invaluable support, patient, assistance and especially his encouragement to this project. I truly have learnt a lot and all this would not be without his guidance.

I also would like to thank all my fellow friends for their contribution in giving me a moral support throughout my project development period. Last but not least, to all my beloved family members who were always, stand by my side to encourage, advice, comfort, cherish, and support me during this entire project. May Allah always with you. Last but not lease, to the Faculty of Electronic and Computer Engineering (FKEKK), because giving me chance to study and complete my project as part of the Bachelor program in Universiti Teknikal Malaysia Melaka (UTEM).

ABSTRACT

A wireless network system consists of several components that support communications using radio or light waves that propagating through an air medium. The coin antenna is used in wireless system that operates at the suitable frequency. There are many types of antenna which are microstrip, wire, array, dielectric resonator, reflector and so on. For this project, the coin antenna is related to the dielectric resonator antenna. This project is started by searching and finding all sorts of antenna theories and information, the existing coins of Malaysian Ringgit coins and find out the dielectric constant for each coin. After collect all the information that related to the antenna and coins, the calculation of designing the coin antenna can be started. The designing of the coin antenna will be continued by simulate the design that has been calculated. Then, the design will be continue by fabricate the design on FR4 board. The next step is measuring the parameters related to the coin antenna design by using Vector Analyzer which are return loss, resonant frequency, bandwidth and many more. The coin antenna met the specifications needed which operate at frequency of 2.4 GHz and the return loss that is below than -10 dB so that 90% power can be transmitted.

ABSTRAK

Sistem rangkaian tanpa wayar merupakan suatu system yang mengandungi beberapa komponen yang dapat menampung komunikasi melalui radio atau gelombang cahaya di mana tersebar melalui medium udara. Terdapat lima langkah untuk merekabentuk antena yg menggunakan duit syiling. Projek ini dimulakan dengan mencari kesemua teori dan informasi yang berkaitan dengan antenna, duit syiling Ringgit Malaysia dan pemalar dielektrik untuk setiap duit syiling. Setelah mengumpul kesemua informasi berkaitan antena dan duit syiling, pengiraan untuk merekabentuk antena menggunakan duit syiling boleh dimulakan. Proses merekabentuk antenna menggunakan duit syiling disambung pula dengan membuat simulasi terhadap rekabentuk yang telah dikira sebelumnya. Seterusnya, proses merekebentuk diteruskan pula dengan proses fabrikasi antena duit syiling tersebut dengan menggunakan papan FR4. Langkah seterunya ialah membuat pengukuran terhadap parameter-parameter yang berkaitan dengan antena duit syiling tersebut dengan menggunakan Penganalisis Vektor. Projek ini dapat memenuhi spesifikasi yang diperlukan di mana ia beroperasi pada frekuensi 2.4 GHz dan kehilangan bertulis kurang daripada -10 dB supaya 90% kuasa dapat dihantar.

CONTENT

CHAPTER	CONTENT	PAGE
		INCE

TITLE	i
VERIFICATION	ii
CONFESSION	iii
SUPERVISOR VERIFICATION	iv
DEDICATION	V
ACKNOWDGEMENT	vi
ABSTRACT	vii
ABSTRAK	vii
CONTENT	ix
LIST OF FIGURE	xiv
LIST OF TABLES	xviii
LIST OF ABREVIATION/ SYMBOL	xix

INTRODUCTION

Ι

1.1	INTRODUCTION OF PROJECT	1
1.2	OBJECTIVES	2
1.3	PROBLEM STATEMENTS	2
1.4	SCOPE	2
1.5	METHODOLOGY	3

C Universiti Teknikal Malaysia Melaka

CHAPTER CONTENT

PAGE

II LITERATURE REVIEW

2.1 INTRODCUTION OF ANTENNA	4
2.2 ANTENNA PARAMETERS	5
2.2.1 Resonant Frequency	6
2.2.2 Gain	6
2.2.3 Radiation Pattern	7
2.2.4 Efficiency	7
2.2.5 Bandwidth	8
2.3 DIELECTRIC RESONATOR ANTENNA	8
2.4 CYLINDRICAL DIELECTRIC RESONATOR	9
ANTENNA	
2.5 MALAYSIAN RINGGIT COINS	10
2.5.1 First Series (1967)	10
2.5.2 Second Series (1989)	11
2.6 FR4 BOARD	12
2.6.1 Cost	12
2.6.2 Electrical Performance	12
2.7 WIRELESS BLOCK DIAGRAM	13

III PROJECT METHODOLOGY

3.1 LITERATURE REVIEW	14	1
-----------------------	----	---

3.2	PARA	AMETR	IC STUDY	14
3.3	CAL	CULAT	ION	15
3.4	SOFT	WARE	SIMULATION	16
	3.4.1	Design	I	16
		3.4.1.1	Microstrip Coin Resonator Design	16
		3.4.1.2	Planar Coin Resonator Design	17
		3.4.1.3	Microstrip Coin Resonator with Offset	17
			Design	
		3.4.1.4	Planar Coin Resonator with Offset	18
			Design	
	3.4.2	Design	II	18
		3.4.2.1	Microstrip Coin with Multiresonator	19
			Design	
		3.4.2.2	Planar Coin with Multiresonator	20
			Design	
		3.4.2.3	Microstrip Coin Resonator with	20
			Locator Design	
		3.4.2.4	Planar Coin Resonator with Locator	21
			Design	
		3.4.2.5	Coin Resonator with Ground Height	21
			Design	
	3.4.3	Design	III	
		3.4.3.1	Microstrip Coin Resonator Design	22
		3.4.3.2	Microstrip Coin with Multiresonator	23
			Design	
		3.4.3.3	Planar Coin with Multiresonator	24
			Design	
3.5	FABR	ICATIO)N	24
3.6	MEA	SUREM	IENT	25
3.7	REPO	ORT WR	RITING	25

IV COIN ANTENNA DESIGN

4.1 CYLINDRICAL DIELECTRIC RESONATOR	26
ANTENNA	
4.2 DESIGN CALCULATION	27
4.3 DESIGN SIMULATION	29
4.4.1 Design I	29
4.4.1.1 Microstrip Coin Resonator Design	29
4.4.1.2 Planar Coin Resonator Design	31
4.4.1.3 Microstrip Coin Resonator with Offset	33
Design	
4.4.1.4 Planar Coin Resonator with Offset	35
Design	
4.4.2 Design II	37
4.4.2.1 Microstrip Coin with Multiresonator	37
Design	
4.4.2.2 Planar Coin with Multiresonator	40
Design	
4.4.2.3 Microstrip Coin Resonator with	41
Locator Design	
4.4.2.4 Planar Coin Resonator with Locator	43
Design	
4.4.2.5 Coin Resonator with Ground Height	44
Design	
4.4.3 Design III	47
4.4.3.1 Microstrip Coin Resonator Design	47
4.4.3.2 Microstrip Coin with Multiresonator	48
Design	
4.4.3.3 Planar Coin with Multiresonator	50
Design	

51

RESULT DISCUSSION AND ANALYSIS
5.1 OBSERVATION
5.2 FACTORS THAT AFFECT THE RESULTS

4.4 FABRICATION PROCESS

VI CONCLUSION

V

6.1 CONCLUSION	60
6.2 FUTURE WORK	61

REFERENCES	62

LIST OF FIGURE

NO	TITLE	PAGE
1.1	Flow Chart of Methodology	3
2.1	Radiation Pattern of DRA in 3D	7
2.2	Cylindrical Dielectric Resonator Antenna over a Ground Plane	9
2.5	Wireless Block Diagram	13
3.4	Microstrip Coin Resonator Design before Simulate by CST Software	17
3.5	Microstrip Coin Resonator with Offset Design before Simulate by CST Software	18
3.6	Microstrip Coin Resonator with Multiresonator Design before Simulate by CST Software	19
3.7	Microstrip Coin Resonator with Locator Design before Simulate by CST Software	20
3.8	Coin Resonator with Ground Height Design of 1 mm before Simulate by CST Software	21
3.9	Coin Resonator with Ground Height Design of 28 mm before Simulate by CST Software	22
3.10	Microstrip Coin Resonator Design before Simulate by CST Software	23
3.11	Microstrip Coin Resonator with Multiresonator Design before Simulate by CST Software	24

C Universiti Teknikal Malaysia Melaka

4.1	Cylindrical Dielectric Resonator Antenna	27
4.3	Microstrip Coin Resonator Design by using Simulation	30
4.4	Result of Microstrip Coin Resonator Design by using	30
	Simulation for Frequency versus Thickness	
4.5	Result of Microstrip Coin Resonator Design by using	31
	Simulation for Return Loss versus Thickness	
4.6	Planar Coin Resonator Design by using Simulation	32
4.7	Result of Planar Coin Resonator Design by using	32
	Simulation for Frequency versus Thickness	
4.8	Result of Planar Coin Resonator Design by using	33
	Simulation for Return Loss versus Thickness	
4.9	Microstrip Coin Resonator with Offset Design by using	34
	Simulation	
4.10	Result of Microstrip Coin Resonator with Offset Design	34
	by using Simulation for Frequency versus Thickness	
4.11	Result of Microstrip Coin Resonator with Offset Design	35
	by using Simulation for Return Loss versus Thickness	
4.12	Planar Coin Resonator with Offset Design by using	36
	Simulation	
4.13	Result of Planar Coin Resonator with Offset Design by	36
	using Simulation for Frequency versus Thickness	
4.14	Result of Planar Coin Resonator with Offset Design by	37
	using Simulation for Return Loss versus Thickness	
4.15	Microstrip Coin Resonator with Multiresonator Design by	38
	using Simulation for Three Coins	
4.16	Microstrip Coin Resonator with Multiresonator Design by	38
	using Simulation for Ten Coins	

NO

TITLE

PAGE

NO	TITLE	PAGE
4.17	Result of Microstrip Coin Resonator with Multiresonator	39
	Design by using Simulation for Frequency versus	
	Multiresonator	
4.18	Result of Microstrip Coin Resonator with Multiresonator	39
	Design by using Simulation for Return Loss versus	
	Multiresonator	
4.19	Result of Planar Coin Resonator with Multiresonator	40
	Design by using Simulation for Frequency versus	
	Multiresonator	
4.20	Result of Planar Coin Resonator with Multiresonator	41
	Design by using Simulation for Return Loss versus	
	Multiresonator	
4.21	Result of Microstrip Coin Resonator with Locator Design	42
	by using Simulation for Frequency versus Coin Locator	
4.22	Result of Microstrip Coin Resonator with Locator Design	42
	by using Simulation for Return Loss versus Coin Locator	
4.23	Result of Planar Coin Resonator with Locator Design by	43
	using Simulation for Frequency versus Coin Locator	
4.24	Result of Planar Coin Resonator with Locator Design by	44
	using Simulation for Return Loss versus Coin Locator	
4.25	Coin Resonator with Ground Height Design of 1 mm by	45
	using Simulation	
4.26	Coin Resonator with Ground Height Design of 28 mm by	45
1.20	using Simulation	10
4.27	Result of Coin Resonator with Ground Height Design by	46
7.41	using Simulation for Frequency versus Ground Height	-10
	using Simulation for Frequency versus Oround neight	

NO	TITLE	PAGE
4.28	Result of Coin Resonator with Ground Height Design by	46
4.00	using Simulation for Return Loss versus Ground Height	. –
4.29	Result of Microstrip Coin Resonator Design by using	47
	Simulation for Frequency versus Thickness	
4.30	Result of Microstrip Coin Resonator Design by using	48
	Simulation for Return Loss versus Thickness	
4.31	Result of Microstrip Coin Resonator with Multiresonator	49
	Design by using Simulation for Frequency versus	
	Multiresonator	
4.32	Result of Microstrip Coin Resonator with Multiresonator	49
	Design by using Simulation for Return Loss versus	
	Multiresonator	
4.33	Result of Planar Coin Resonator with Multiresonator	50
	Design by using Simulation for Frequency versus	
	Multiresonator	
4.34	Result of Planar Coin Resonator with Multiresonator	51
	Design by using Simulation for Return Loss versus	
	Multiresonator	
4.35	The exported of simulation design in CorelDraw Software	52
4.36	FR4 Board in the UV Exposure	53
4.37	FR4 Board in the Pail to Develop the Design	53
4.38	Measurement Result for Coin Resonator with Ground	54
	Height of 15 mm	
4.39	Measurement Result for Coin Resonator with Ground	55
	Height of 2 mm	
4.40	Measurement Result for Coin Resonator with Ground	56
	Height of 7 mm	

LIST OF TABLE

NO	TITLE	PAGE
2.3	First Series of Malaysian Ringgit Coins	10
2.4	Second Series of Malaysian Ringgit Coins	11

LIST OF ABREVIATION/ SYMBOL

D	-	Diameter
t	-	Thickness
DRA	-	Dielectric Resonator Antenna
FR4	-	Flame Retardant Type 4
PCB	-	Printed Circuit Board
Tx	-	Transmitter
Rx	-	Receiver
CST	-	Computer System Technology
UV	-	Ultra Violet

xix

CHAPTER I

INTRODUCTION

This chapter contains about the introduction of the project where it involved of the objectives, problem statements and research scope.

1.1 Introduction of Project

The first series of cent coins were introduced in 1967 in denominations of 1 cent, 5 cent, 10 cent, 50 cent then followed by 1 ringgit coin. The second series of cent coins entered circulation in late-1989, sporting completely redesigned observes and reverses, but remaining the designs of edges, diameters and composition of the previous series. Nowadays, the 1 ringgit coins have been terminated by Bank Negara Malaysia [3].

The existing coins are used in designing the coin antenna in this project. The antenna that has been refer to in designing this coin antenna is cylindrical dielectric resonator antenna. The coin antenna is used in wireless system that operates at the suitable frequency. A wireless network system consists of several components that support communications using radio or light waves that propagating through an air medium [7].

1.2 Objectives

The objective of this project is to design coin antenna using the existing coins in the market with a low cost and a suitable frequency as stated in Industrial Science Medical (ISM). The coin antenna will be feed by using transmission line feeding system.

1.3 Problem Statement

This project is efficient to the environmental factors. This is because coins such as 1 cent and 5 cent are lack in used. To overcome this problem, those coins can be used to design the coin antenna. Besides that, the coin antenna will give a broader bandwidth. This is because usually the antenna comes with a narrow bandwidth.

1.4 Scope

This project is subjected to several scope and limitations that are narrowed down to the study. There are few scopes and guidelines listed to unsure the project is conducted within its intended boundary. This is to ensure the project is heading in the right direction to achieve its intended objectives. The scope of this project is started by designing the coin antenna using the existing coins. Next, simulate the parameter of the coin antenna in terms of the resonant frequency, bandwidth gain, directivity and so on using CST Software. After finished the simulation, the design is been fabricated by using FR4 board. Then, the parameter of the coin antenna is been measured by using Vector Analyzer.

1.5 Methodology

There are few methods that have been taken to complete the project. The flow chart of the methodology is shown as Figure 1.1.

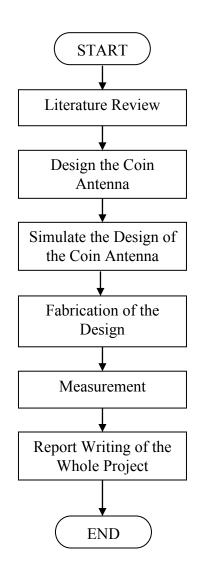


Figure 1.1: Flow Chart of Methodology

CHAPTER II

LITERATURE REVIEW

This chapter will discuss about the theory of the antenna in terms of various types, parameter and so on. Besides that, the information of the existing coins specific in size and composition also will be explained in this chapter.

2.1 Introduction of Antenna

An antenna is a transducer designed to transmit or receive electromagnetic waves. In other words, antennas convert electromagnetic waves into electrical currents and vice versa. Antennas are used in systems such as radio and television broadcasting, point-to-point radio communication, wireless LAN, radar and space exploration. Antennas are most commonly employed in air or outer space, but can also be operated under water or even through soil and rock at certain frequencies for short distances [1].

Physically, an antenna is simply an arrangement of one or more conductors, usually called elements in this context. In transmission, an alternating current is created in the elements by applying a voltage at the antenna terminals, causing the elements to radiate an electromagnetic field. In reception, for the inverse occurs, an electromagnetic field from another source induces an alternating current in the elements and a corresponding voltage at the antenna's terminals. Some receiving antennas (such as parabolic and horn types) incorporate shaped reflective surfaces to collect electromagnetic waves from free space and direct or focus them onto the actual conductive elements [1].

Antennas have practical uses for the transmission and reception of radio frequency signals such as radio and television. In air, those signals travel very quickly and with a very low transmission loss. The signals are absorbed when moving through more conductive materials, such as concrete walls or rock. When encountering an interface, the waves are partially reflected and partially transmitted through. A common antenna is a vertical rod a quarter of a wavelength long. Such antennas are simple in construction, usually inexpensive, and both radiate in and receive from all horizontal directions (omni directional). One limitation of this antenna is that it does not radiate or receive in the direction in which the rod points. This region is called the antenna blind cone or null [1].

2.2 Antenna Parameters

There are several critical parameters affecting an antenna's performance that can be adjusted during the design process. These are resonant frequency, return loss, gain, radiation pattern, polarization, dielectric and bandwidth. Transmit antennas may also have a maximum power rating, and receive antennas differ in their noise rejection properties. All of these parameters can be measured through various means.