DESIGN OPTIMIZATION ON

POWER TRAIN SYSTEM FOR FIRE FIGHTING MACHINE

OMAR ABDULLAH @ BONNY LU HIENG SIONG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

🔘 Universiti Teknikal Malaysia Melaka

'I/We* have read this thesis

and from my/our* opinion this thesis

is sufficient in aspects of scope and quality for awarding

Bachelor of Mechanical Engineering (Automotive)'

Signatures	:
Name of Supervisor I	: Mr. Mohd Zakaria Mohammad Nasir
Date	:

Signatures	:
Name of Supervisor II	: Mr. Razali Mohd Tihth
Date	:

*Line which is irrelevant

DESIGN OPTIMIZATION ON

POWER TRAIN SYSTEM FOR FIRE FIGHTING MACHINE

OMAR ABDULLAH @ BONNY LU HIENG SIONG

This report is presented in

Partial fulfillment of the requirements for the

Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

MAY 2010

"I declare this report is on my own work except for summary and quotes that I have mentioned its sources"

Signature	:
Name of Author	:
Date	:

Dedicated to my beloved mom and dad, thank you all for all that you have done. Hard times are now turned into times of pride. I have gone through so many different stages changing ideas and goals while searching for the right kind of life for me. You were always ready to help me at all times. It must have seemed like I would never follow one straight path. Now that I know what I am doing and where I am going I can only show you my extreme appreciation for your support by being true to all the ideals and values that you tried to teach me. Thank you forever for standing by me. I love and appreciate you forever. May Allah S.W.T bless you with happiness and give a good health all of the time. Wassalam.

ACKNOWLEDGEMENTS

Assalamualaikum W.B.T. First of all, I would like express my gratitude to my supervisor, Mr. Mohd. Zakaria Mohammad Nasir on his support from every aspect throughout the completion of this PSM report. Without his guidance, I would not be able to handle this project wisely.

I also thank to my family for being supportive from many aspects to let me complete this project. Not to forget, thanks to my fellow friends for being kind to offer me such help in many ways and knowledge.

Last but not least, thanks crews from Ritz Power Mechanics Sdn. Bhd. for sharing their knowledge and provide some details on the UTeM's Fire Fighting Machine.

ABSTRAK

Kajian untuk Projek Sarjana Muda ini adalah berkenaan penambahbaikan rekabentuk pada sistem penghantaran kuasa mesin pemadam api, untuk meningkatkan sistem pacuan Mesin Fire Fighter UTeM, atau dikenali sebagai UFFM (UTeM Fire Fighter Machine). Oleh kerana UFFM masih dalam peringkat kajian dan pembangunan, terdapat beberapa perkara yang boleh dipertingkatkan setelah pemantauan dibuat ke atas mesin. Masalah utama yang terlibat pada mesin adalah kelajuan maksimum yang rendah dan pembelokan yang perlahan. Untuk kajian ini, fokus terhadap peningkatan sistem penghantaran kuasa UFFM untuk mencapai objektif dan skop. Pada rekabentuk yang asal, mesin ini menggunakan satu motor dan satu transmisi dimana kuasa tersebut disalurkan kepada rerantai getah. Semasa membelok, transmisi akan menyahaktifkan syaf pemacu sebelah dalam mesin. Objektif projek ini adalah untuk mengkaji mekanisma sistem pacuan dan rekabentuk pembaikan sistem penghantaran kuasa UFFM, dan mengerjakan pacuan dan membolehkan mesin untuk bergerak lebih lancar. Skop kajian ini difokuskan kepada sistem pacuan mesin, untuk melancar dan mempercepatkan proses membelok. Berdasarkan kajian terdahulu, penggunaan dua unit motor lebih efektif. Seterusnya, rekabentuk sistem pacuan dua motor akan dibawa lebih lanjut, dengan rekabentuk dan ganjalan yang sesuai, selain menaiktaraf sistem stereng UFFM.

ABSTRACT

The research for 'Projek Sarjana Muda (PSM)' is about design optimization on power train system for fire fighting machine, which is to improve drivetrain of UTeM's Fire Fighter Machine, known as The UFFM (UTeM Fire Fighter Machine). Since the UFFM is still under research and development (R&D), there are several matters have been discovered, that can be improved; after inspecting the machine. The main problems are low maximum speed and slow turning. For this study, the improvement of power train on the UFFM is focused in order to meet the objective and scope. On the existing design, UFFM uses one motor and one transmission where the power is transferred to the rubber track. While turning, the transmission will deactivate inner side drive shaft of the machine. The objective of this project is to study the drive train mechanism and design improvement the power train system of the UFFM. Besides that, the existing drive train is reworked and enables the machine to move more accurately. The scope of this research is focused on the machine's drive train, which is to make the steer process smooth and quick. Based on previous study, the implementation of two motors is more effective. Thus, the dual motor drive setup will be carried further with suitable design and mountings, and improve the steering system.

TABLE OF CONTENT

CHAPTER TITLE

Ι

PREFACE	ii
DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRAK	vi
ABSTRACT	vii
TABLE OF CONTENT	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOL	xvi
LIST OF EQUATIONS	xvii
LIST OF APPENDICES	xix
NOMENCLATURE	XX

2
3
4
4

II	LIT	TERATURE REVIEW	5
	2.1	UTeM's Fire Fighter Machine	6
	2.2	Existing Fire Fighter Machine in Market	8
		2.2.1 ARMTEC's SACI Firefighting Robot	8
		2.2.2 Rainbow 5	9
	2.4	Parts and Components	10
		2.4.1 DC Motor	10
		2.4.2 Pulleys and Belts	12
		2.4.3 Sprockets and Roller Chain	14
		2.4.4 Chain versus Drive Belts	15
		2.4.5 Wheel Diameter, Torque, and Speed	17
		2.4.6 Tank Track	18
		2.4.7 Tank Track Skid Steering	22
		2.4.7.1 Dual Drive	23
		2.4.7.2 Clutch-Brake	23
		2.4.7.3 Geared Steering	25
		2.4.7.4 Braked Differential	26
		2.4.7.5 Cletrac or Controlled Differential	27
		2.4.7.6 Maybach Double Differential	28
		2.4.7.7 Double Differential	29
		2.4.7.8 Triple Differential	30
	2.5	Study Analysis	32
		2.5.1 Advantages	32
III	ME	THODOLOGY	33
	3.1	Process Flow Chart for PSM	34
	3.2	Concept Design	35
		3.2.1 Design 1: Dual Motor Drive	36
		3.2.2 Design 2: Clutch Brake System	38
		3.2.3 Design 3: Toroidal CVT System	40
	3.3	Design Comparisons	43

CHAPTER TITLE

	3.4	Concept Scoring Matrix	44
	3.5	Motor Controller	45
		3.5.1 Robot Power Sidewinder	45
IV	DE	TAIL DESIGN	47
1	4.1	Electric DC Motor	48
		Pulley and Belt Selection	50
		4.2.1 Pulley	51
		4.2.2 Belt	53
V	DES	SIGN ANALYSIS	61
	5.1	Motor frame	63
		5.1.1 Analysis on Motor Frame	65
	5.2	·	69
		5.2.1 Analysis on Beam 'A'	70
	5.3	Beam 'B'	74
		5.3.1 Analysis on Beam 'B'	75
	5.4	Beam 'C'	79
		5.4.1 Analysis on Beam 'C'	80
	5.5	Drive Shaft	84
		5.5.1 Analysis on Drive Shaft	86
	5.6	Chassis	89
		5.6.1 Analysis on Chassis	91
VI	RES	SULT AND DISCUSSION	96
	6.1	Result Analysis	96
	6.2	Effect of the Analysis	97
VII	CO	NCLUSION	98
	7.1	Conclusion	98
	7.2	Recommendation	99

CHAPTER	TITLE	PAGE
	REFERENCES	100

	100
BIBLIOGRAPHY	101
APPENDIX	103

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Speed test in 5 meters	7
2.2	General specifications of the UFFM	7
2.3	Comparisons between chain and belt	15

2.4	Time elapsed for the UFFM to steer at certain angle	31
3.1	Comparisons for each design	43
3.4	Concept Scoring Matrix	44
4.1	NEMA Design B, Single speed 1200, 1800, 3600 rpm	48
4.2	Pulley size and speed	52
4.3	General specifications of the UFFM	53
4.4	Characteristics of common belt types	59
5.1	Analysis Summary	95

LIST OF FIGURES

FIGURE TITLE

1.1	UTeM's Fire Fighter Machine	2
1.2	The UFFM's motor and drive train	3
1.3	UFFM's heavy duty rubber track belt	4
2.1	Side view of UTeM's Fire Fighter Machine	6
2.2	ARMTEC's SACI putting out fire	8
2.3	Japanese Rainbow 5	9
2.4	V-belt and flat pulley	12
2.5	V-Belt drive conventional frame	12
2.6	Silicone coated belts	13
2.7	Nylon conveyor belt	13
2.8	Chain roller sprocket	14
2.9	Roller chain	14
2.10	Real tank track	18
2.11	Tank track components	19
2.12	Adding bogies to tracks	20
2.13	Wheel rollout	21
2.14	The UFFM track assembly	21
2.15	Skid steering frictional forces magnitude	22
2.16	Clutch brake steering diagram	24
2.17	Geared steering diagram	25

FIGURE TITLE

2.18	Braked differential steering diagram	26
2.19	Controlled differential steering system	27
2.20	Maybach double differential steering	28
2.21	Double differential steering diagram	29
2.22	Triple differential steering	30
2.23	Small trackwidth tank track skid steering	31
3.1	Flow of case study	34
3.2	Main frame of the UFFM	35
3.3	Top view of the UFFM using dual motor drive	36
3.4	Dual motor setup	36
3.5	Top view of the UFFM using clutch brake system	38
3.6	Clutch brake mechanisms	39
3.7	Top view of the UFFM using Toroidal CVT system	40
3.8	Motion in straight line	41
3.9	Steer to the right	41
3.10	Steer to the left	41
3.11	Sidewinder front panel controls and LED indicators	46
3.12	Sidewinder rear power leads and grommets in the enclosure	46
	rear plate	
4.1	Motor mounting	47
4.2	Sanpo motor	48
4.3	CAD of electric motor	48
4.4	Pulley and timing belt positioning on Design 1	50
4.5	Free Body Diagram of pulley system	54
4.6	Centrifugal force	59
5.1	Main frame with dual motor mounting	62
5.2	Motor frame with slotted bracket	63
5.3	Side view	64

FIGURE TITLE

5.4	Rear view	64
5.5	Top view	64
5.6	Constraints on the slotted bracket	65
5.7	Loads acting on the slotted hole	66
5.8	Stress distribution	66
5.9	Displacement distribution and deformation	67
5.10	Factor of Safety of the motor frame	67
5.11	Beam 'A'	69
5.12	Rear view	69
5.13	Side view	70
5.14	Constraints on both ends and hollow beam	71
5.15	Loads acting on screw mountings	71
5.16	Stress distribution	72
5.17	Displacement distribution and deformation	72
5.18	Factor of Safety of beam 'A'	73
5.19	Beam 'B'	74
5.20	Rear view	74
5.21	Side view	75
5.22	Constraints on joints	75
5.23	Loads acting on screw mountings	76
5.24	Stress distribution	76
5.25	Displacement distribution and deformation	77
5.26	Factor of Safety of beam 'B'	77
5.27	Beam 'C'	79
5.28	Rear view	79
5.29	Side view	80
5.30	Constraints on joints	80
5.31	Loads acting on screw mountings	81
5.32	Stress distribution	81
5.33	Displacement distribution and deformation	82
5.34	Factor of Safety of beam 'C'	82

FIGURE TITLE

5.35	Final drive shaft	84
5.36	Side view	85
5.37	Constraint on track joint	86
5.38	Torque acting on drive shaft mounting	86
5.39	Stress distribution	87
5.40	Displacement distribution and deformation	87
5.41	Factor of Safety of drive shaft	88
5.42	Chassis with motor frame	89
5.43	Chassis side view	90
5.44	Chassis rear view	90
5.45	Chassis top view	91
5.46	Constraints on the slotted bracket	92
5.47	Loads acting on the slotted mounting	92
5.48	Stress distribution	93
5.49	Displacement distribution and deformation	93
5.50	Factor of Safety of the chassis	94

LIST OF SYMBOLS

ω	=	Angular speed, rad/s
Ν	=	Rotational speed per minute, RPM
Р	=	Power, W
Т	=	Torque, N.m
V	=	Electromotive force/voltage, V
Ι	=	Current, A
η	=	Efficiency
G	=	Percentage of slip between belt and drive sheave, %
T _c	=	Centrifugal tension, N

LIST OF EQUATIONS

EQ.	ELEMENTS		UNIT
2.1	Angular Speed,	$\omega = \frac{2\pi N}{60}$	rad/s
2.2	Power,	$P = T\omega$	Watt
2.3	Distance,	$\mathbf{D}=\boldsymbol{\pi}\mathbf{d}$	m
4.1	Torque,	T = (5252 x HP) / N	lb-ft
4.2	Horsepower,	$HP = (V \times I \times \eta) / 746$	hp
4.3	Velocity,	$N_2 = N_1 / 2$	rpm
4.4	Linear speed,	$v = r\omega$	m/s
4.5	Linear speed,	$v_1 = (\pi d_1 N_1) / 60$	m/s
4.6	Ratio,	$n = N_2/N_1 = d_1 / d_2$	-
4.7	Ratio,	$N_2 / N_1 = [1 - (G_1 + G_2) / 100]$	-
4.8	Centrifugal tension,	$Tc = m.v^2$	Ν
4.9	Torque motor,	$\tau_{motor} = F_1 \ . \ r_1$	Nm
4.10	Flat belt ratio,	$e^{\mu\theta} = \left[\left(T1 - Tc\right) / T2 - Tc\right) \right]$	-
4.11	Contact angle,	$\theta_{\rm d} = \sin^{-1} \left[\left({\rm D} - {\rm d} \right) / 2{\rm C} \right]$	0

EQ. ELEMENTS

4.12
$$\omega = \gamma bt$$
 N/m³

4.13Centripetal force,
$$F_c = (w / g).V^2$$
N4.14Torque, $T = (H_{nom}.K_s. n_d) / 2\pi n$ Nm

4.15 Allowable force,
$$F_1 - F_2 = (2T) / d$$
 N

5.1Motor power,
$$P = T\omega$$
W5.2Rotation ratio, $n = \omega_{motor} / \omega_{drive shaft}$ -5.3Torque, $\tau_{drive shaft} = \tau_{motor}$. rotation ratioNm

LIST OF APPENDICES

TITLE

PAGE

А	Gantt Chart	104
В	Chassis	106
С	Motor Frame	109
D	Support Beam	112
Е	Drive shaft	116
F	Circuit Diagram For UTeM Fire Fighter	118

NUM.

NOMENCLATURE

- UFFM UTeM's Fire Fighter Machine
- N/A Not Available
- CAD Computer-Aided Design
- DC Direct Current
- R&D Research & Development
- RPM Revolutions per Minute
- CVT Continuously Variable Transmission
- ICE Internal Combustion Engine
- PDA Personal Digital Assistant
- NEMA National Electrical Manufacturers Association
- FOS Factor of Safety

CHAPTER I

INTRODUCTION

In 2007, UTeM has developed its very own fire fighting machine under the Faculty of Mechanical Engineering, in collaboration with local engineering company, Ritz Power Mechanics Sdn. Bhd.. Named as 'UTeM Fire Fighter Machine', the machine is controlled via radio frequency control, which allows the operator to send the machine to potential site while the operator stays at the safe site. This research helps the firemen to put out fire in high risk areas like factory, forests and war site. Many dangerous tasks can be solved and firemen's life can be secured by using the UFFM.

Currently, there are several weaknesses of the machine, such as overall design, cooling system, electrical system, and drive train. In this project, the task is to upgrade the drive train, as the machine is having difficulties to turn quickly. This study is actually the contribution from the past research, where the upgrade and research progress on several setup can be performed on the machine, including improving the machine's drive train and steering system.

Figure 1.1: UTeM's Fire Fighter Machine

1.1 Project Significant

This project will improve the power train mechanism on the UFFM with variable speed and improve the steering system. Once the objective is achieved, the UFFM will be capable to reach a high risk spot in a short period, thus putting out fire quickly.