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ABSTRACT

Pipelines are one of the main parts in many industrial structures. Cracks and corrosion
within the pipeline lead to huge damages. To detect these problems, guided wave testing
(GWT) is used. GWT is implemented by using different transducers. One of the most
frequently used is magnetostrictive (MS) transducer due to many reasons, such as ease of
fabrication and mode excitation, reasonability of price and high storage of energy. However,
the application of GWT using MS sensors on pipes depends on the width of sensor. This
study aims to investigate the relation between width of MS sensor and wavelength by
modelling an aluminum pipe. In this study, mainly four software programs have been used.
Firstly, MATLAB software is used to calculate the dispersion curve and to generate a tone
burst signal. Secondly, ANSYS software is used to model the pipe. Thirdly, LS-PREPOST
software is used to visualize the wave propagation and to extract the time waveforms. Lastly,
LABVIEW software is used to enhance the signals. An aluminum pipe of 6 mm thickness and
100 mm outer diameter has been modelled to observe the relation at different frequencies of

50 kHz, 75 kHz and 100 kHz in the longitudinal excitation mode L (0, 2).
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CHAPTER 1

INTRODUCTION

1.1 Overview

In this chapter, a brief introduction of the research background is presented which
consists of background information about guided wave techniques used in pipes, problem

statement, objective and the scopes of the research.

1.2 Background

It is very important for human beings to go for a medical inspection regularly in order
to make sure that our parts of body are functioning well and identify symptoms of health
problem at the early stage. In industrial prospective, the vital machines are also very important
and critical to undergo maintenance to ensure a reliability of a system, high production of the
system and good performance of all the components. However, these vital machines or
structures are normally exposed to different kinds of failures in which affect their performance
adversely leading to catastrophic consequences. One way to avoid these consequences from

happening is to perform a structure health monitoring method.

Nowadays, people are aware enough of the importance of defects prognosis systems
for the mechanical structures. A defect prognosis will provide a guideline or clear indications
to the users about the current condition or situation of the damage, the exact location of the
damage and the estimation of the usefully remaining life for the detected structure. From
indications, structure health monitoring (SHM) becomes a very important tool in investigation
of the defect prognosis. SHM is a method that used to examine the condition of the detected
structure and to provide valuable information about any detected defects or damages. The

SHM system, in most cases, is composed of transducers for defect detection, pulser-receiver



for wave excitation, data acquisition and central processor to assess the health of the structure.
There are many approaches used under the SHM. One of the most important approaches is
using the non-destructive technique. Among many techniques used under the NDT,
Ultrasonic Guided wave testing is one of the latest, the most valuable and important
(Raghavan & Cesnik, 2008).

Guided waves are stress waves in which they are forced to propagate along a path
bounded or guided by the geometry of detected the structure. Ultrasonic guided wave (UGW)
inspection is nowadays applicable to investigate the defects or cracks along vital structures
such as pipes, plates, rails and multilayer structures. In industry, UGW has contributed to the
industrial revolution due to the variety of huge advances that UGW made in terms of
inspection methodologies. In comparison to ultrasonic bulk waves, GWs have many

advantages and benefits over the ultrasonic bulk waves which are as follow (Rose, 2004):

1. A single sensor can cover inspection for long range distances.

2. A Great defect detection will be done by selecting the right frequency and
mode.

3. A higher sensitivity obtained compared to other NDT inspection method.

4. Hidden, coating, insulation or underwater structures can be detected easily.

Pipelines are very critical elements in any industrial structure. A small crack within the
pipeline can cause a leakage which then lead to huge damages to the industrial structure. GW
can inspect the underground pipe without the need of excavation, without removing coating
and insulations. In pipe, guided waves propagate only in three different modes. The three
modes are torsional mode (T), longitudinal mode (L) and flexural mode (F). The properties of
the propagating guided waves are very complicated. However, with careful selection of the
frequency and wave mode, GW can cover the inspection with single probe of the whole area.
In most cases of guided wave inspection, they use a low ultrasonic frequencies from 25 kHz
up to 100 kHz to ensure that a defect area will be exposed to enough transmitted energy and
higher depth penetration. The GWT technique has the ability to calculate the distance of the

defect from the location of the sensor from the time of the reflected wave of defect and the



group velocity of the selected mode (Cawley, Cegla, & Galvagni, 2012). Figure 1.1 illustrates

the actual wave propagation of nondestructive inspection in pipe using GW.

Transmited Wave

Figure 1.1: Mechanism of inspection pipe using GW (Hegeon Kwun, Sang-Young
Kim, and Glenn M. Light, 2011).

UGWs can be performed by using different kinds of transducers. One of the frequently
used commercial transducer is the type of magnetostrictive transducer (MsT). The MsT
excites and receives guided waves in electromagnetic mechanism within the detected
structure. We choose this magnetostrictive transducer for our study due to many reasons such
as it is cheap compared to other commercial transducers, easy to fabricate, easy to control and

excite modes and has high energy.

In this study, a model and guided wave simulation will be conducted by using ANSYS
computer aided simulation software. The study aims is to visualize the relationship between
the wavelength and width of magneostrictive transducer in three different directions when a
specific wave cycles of burst signal introduced at a selected central frequency of the wave
mode. The suitable width will be investigated to produce the acoustic wave according to tone

burst input signal.



1.3 Problem Statement

GW transducers represent a very critical element in structure health monitoring due to
the major role that GW transducers play. The application of GW technique using Ms sensors
on pipes are conducted at different width of the sensors according to the environment of the
inspection which considers the thickness, frequency and energy to be introduced to the
structures. Thicker pipes will be introduced with lower frequency of L (0, 1), L (0, 2) or T (0,
1) compared to the thinner pipes due to guided wave dispersion curve properties. At the same

time, the number of cycles is also varying for inspection of coated pipe or with flowing fluids.

This study aims to investigate the relation between the width of MS sensors and the

wavelength of the selected wave mode. Figure 1.2 shows the schematic diagram of the

W
< >
4— MS
Where (W o« A7)

Figure 1.2: Schematic diagram of the problem statement.

problem statement.

1.4 Objective

This research is conducted to achieve the objective below.

1. To study the effect of width on magnetostrictive transducer for excitation of guided

wave propagation in pipe at L (0, 2) mode.



1.5 Scope of Project
The scopes of this research are:
1. A simulation of wave mode propagation excited by magnetostrictive sensor at

different wavelengths using ANSYS.
2. Observation the amplitude of time waveform using LABVIEW



CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter will discuss the literature review related to the GW technique
and its implementation in real life applications. Also, the fundamentals of this techniques will
be discussed in details such as the concept of guide wave propagation in pipes and plates,
piping inspection, dispersion curve to determine the phase and group velocity of the modes

and guided wave’s transducers.

2.2 Guided Wave Propagation

A very effective diagnostic tool used in the field of nondestructive testing (NDT) or
structural health monitoring (SHM) is guided waves (GW). In order for GW to propagate in
any structure, the structure must be of a known geometric boundary. In other words, when the
structure is being excited by any ultrasonic GW transducers, stress waves will be generated
and forced to propagate along a path guided by the geometry of detected the structure. Guided
waves can propagate in many structures such as thin plates, rods, tubes and multilayers
structures. Of the many structures, a literature review herein will focus on the most two

common structures used in industry which are pipes and plates.



2.2.1 Guided Wave Propagation in Plates

In plate structures, the propagating guided waves used are lamb waves and shear
waves. In 1917, Lamb waves were firstly discussed by Lamb who produced the dispersion
equation. Lamb waves are waves that propagate parallel to the surface of the thickness of the
material. Thus, propagation of lamb wave depend strongly on the material properties such
thickness and density. The most two common motions of vibrations modes occur while lamb
wave propagating are symmetrical modes (S-mode) and anti-symmetrical modes (A- mode).
The name of symmetric mode comes from the symmetry of wave propagation of the guided
wave along the mid-plane of the plate and is noted as S. On the other hand, the anti-symmetric
mode comes from the anti-symmetry of wave propagation of the guided wave along the mid-
plane of the plate and is noted as A. Each mode has its Own Characteristics and Speed which
is controlled by the plate thickness and wave frequency (Ryden, Park, Ulriksen, & Miller,
1965). Figure 2.1 shows the types of lamb wave modes.
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Figure 2.1: Types of lamb wave modes (a) symmetric mode (b) anti-symmetric mode
(Diligent, 2003) .



