

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IMPLANTABLE IN BODY ANTENNA DESIGN AT MEDICAL IMPLANT COMMUNICATION SERVICE BAND FOR TELE-MEDICINE APPLICATION

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Telecommunication) with Honours.

by

SWARNA LATHA A/P C.CHEMBAN B071410092 920527-14-5882

FACULTY OF ENGINEERING TECHNOLOGY 2017

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK:Implantable In Body Antenna Design At Medical Implant Communication Service Band For Tele-Medicine Application

SESI PENGAJIAN: 2017/18 Semester 1

Saya

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (\checkmark)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

📝 🛛 TIDAK TERHAD

SULIT

Disahkan oleh:

Tarikh:

SWARNA LATHA

Cop Rasmi:

Alamat Tetap:

B-3-5 Sri Jati 2 Condo,

No:6 Jalan Sri Jati,

Puchong, Kuala Lumpur

Tarikh: _____

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Implantable In Body Antenna Design At Medical Implant Communication Service Band For Tele-Medicine Application" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	SWARNA LATHA A/P C.CHEMBAN
Date	:	

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honours. The member of the supervisory is as follow:

.....

(Mr. Adib Bin Othman)

ABSTRAK

Projek ini difokuskan pada kajian parameter antena dan kesan radiasi dalam model lengan manusia yang dihasilkan oleh "implantable flexible hexagonal shape patch antenna". "This implantable hexagonal shape patch antenna" adalah fleksibel dan sesuai untuk aplikasi yang boleh pakai. Ciri khas antena ini adalah ia adalah fleksibel dan boleh pakai ke mana-mana bahagian model lengan manusia yang beroperasi di 402 - 405 "MHz MICS (Medical Implant Communication Service)" mengenai pengoptimuman antena ditanam "implantable antenna" yang dipilih untuk "bandwidth", "return loss", "radiation" yang menunjukkan "efficiency" antena yang dicadangkan. "This flexible hexagonal shape patch antenna" diukur dalam dua tisu yang berbeza di dalam model lengan manusia yang lemak dan otot dibentangkan dalam kertas ini. Terdapat dua keadaan pemerhatian iaitu "antenna in free space condition" dan "attach to human arm model". Kedua-dua syarat dianalisis, dari segi prestasi antena seperti "frequency", "return loss", "realized gain", "directivity" dan "efficiency". Selepas itu, simulasi dilakukan dalam jarak dekat di dalam model lengan manusia yang sepadan dengan "antenna field region" dan "size of antenna's reactive near-field" yang berpuas hati menjadi faktor penting dalam penilaian operasi yang boleh diterima dalam badan. "For the implanted hexagonal shape patch antenna in muscle layer, the resonant frequency is 403 MHz and the return loss is -33.937dB. The realized gain is 0.91". Maksimum 1.6 W/kg SAR ialah 1.52 untuk 1g tisu. Oleh itu, parameter tersebut berpuas hati. Antena yang dicadangkan diuji dalam pelbagai keadaan lenturan. Hasil kajian ini membantu jurutera dan doktor menilai antena untuk kegunaan "implantable flexible hexagonal shape patch antenna "dalam aplikasi perubatan. Lebih khusus lagi, kerja ini memberi tumpuan kepada antena untuk diintegrasikan ke peranti implan dengan keupayaan telemetri data jarak jauh.

ABSTRACT

This project is focused on the study of the antenna parameters and the radiation effect in the human arm model produced by the implantable flexible hexagonal shape patch antenna. This implantable hexagonal shape patch antenna is flexible and suitable for wearable applications. The special feature of this antenna is it is flexible and wearable to any part of human arm body which operates at 402 - 405 MHz MICS (Medical Implant Communication Service) on the optimization of the chosen implantable antenna for bandwidth return loss, radiation which shows the efficiency of the proposed antenna. This flexible hexagonal shape patch antenna is measured in two different phantom tissues inside human arm model which are fat and muscle are presented in this paper. There are two conditions of observation which are antenna in free space condition and attach to human arm model condition. Both conditions were analyzed, in term of antenna performance such as frequency, return loss, realized gain, directivity, and efficiency. After that, the simulation is carried out in the proximity inside human arm model which commensurate with the antenna field region and the size of antenna's reactive near-field that is satisfied to be an important factor in the evaluation of an acceptable in body operation. For the implanted hexagonal shape patch antenna in muscle layer, the resonant frequency is 403 MHz and the return loss is -33.937dB. The realized gain is 0.91. The maximum 1.6 W/kg SAR is 1.52 for 1g of tissues. Therefore, those parameters are satisfied. The results of this study are helpful to engineers and doctors evaluating antennas for the use of flexible hexagon patch antenna in medical application. More specifically, this work focuses on antennas to be integrated into implantable devices with far-field data telemetry capabilities.

DEDICATION

I dedicate this project to God Almighty my creator, my strong pillar, my source of inspiration, wisdom, knowledge and understanding. He has been the source of my strength throughout this project and on his wings only have I soared. I also dedicate my dissertation work to my family and many friends. A special feeling of gratitude to my loving mother, Mages Wary whose words of encouragement and push for tenacity ring in my ears. For my mom, without her I would not be here. My brother, Thana Seelan have never left my side and are very special. For they have raised, cherished, and loved me, according to the will of my Grandmother in heaven. From

day one loving words, actions, and intentions have been poured out on me by their hands. Thank you. My love for you all can never be quantified

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to my supervisor Professor Adib Bin Othman for the continuous support of my research and design, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of design and simulation of this project. I could not have imagined having a better advisor and mentor for my undergraduate project. Without his assistance and dedicated involvement in every step throughout the process, this paper would have never been accomplished. I would like to thank you very much for your support and understanding over these past one years.

I thank my classmate Sassinananthan who as a good friend, was always willing to help and give his best suggestions. Besides that, for the stimulating discussions, designing and simulations, for the sleepless nights we were working together before deadlines, and for all the fun we have had in the last years. I have to appreciate the guidance given by other supervisor as well as the panels especially in our project presentation that has improved our presentation skills thanks to their comment and advices.

TABLE OF CONTENT

Projec	ot Title	i
Verifi	cation Form	ii
Declar	ration	iii
Appro	oval	iv
Abstra	ak	V
Abstra	act	xi
Dedica	ation	xi
Ackno	owledgement	xi
Table	of Content	xi
List of	f Tables	xi
List of	f Figures	xi
Abbre	eviation	xi
CHAI	PTER 1: INTRODUCTION	1
1.0	Introduction	1
1.1	Introduction to Title	1
1.2	Problem Statement	4
1.3	Objectives	4
1.4	Project Scope	5
1.5	Thesis Organization	6
CHAI	PTER 2: LITERATURE REVIEW	7
2.0	Introduction	7
2.1	Introduction to Antenna	8
	2.1.1 Log-Periodic Antenna	8
	2.1.2 Wire Antenna	9
	2.1.3 Travelling Wave Antenna	9
2.2	Antenna Performance Parameters	10
	2.2.1 Directivity and Gain	10

	2.2.2	Input Impedance and VSWR	11
	2.2.3	Return Loss	12
	2.2.4	Radiation Pattern	12
	2.2.5	Bandwidth	14
	2.2.6	Polarization	15
	2.2.7	Antenna Efficiency	16
	2.2.8	Specific Absorption Rate (SAR)	16
2.3	Feedir	ng Techniques	18
	2.3.1	Micrstrip Line Feed	18
	2.3.2	Coaxial Feed	19
	2.3.3	Aperture Coupled Feed	20
	2.3.4	Proximity Coupled Feed	21
2.4	Theory	of Microstrip Patch Antenna	23
2.5	Advant	ages and Disadvantages of Micro strip Patch	
	Antenn	a	26
2.6	Freque	ncy Band for Biotelemetry	27
2.7	Implan	table Antennas	28
2.8	Biologi	ical Tissues Properties	30
	2.8.1	Biocompatibility and Biomaterials	31
2.9	Operat	ing Principles of Implantable Antennas	31
2.10	Miniatu	urization Techniques	32
	Introdu	ction to Computer Simulation Technology	
2.11	Microw	vave	33
2.12	Critical	l Review	35
CHA	PTER 3	3: METHODOLOGY	53
3.0	Introdu	ection	53
3.1	Design	Specification	54
3.2	Antenn	a Design	55
	3.2.1	Formula for Dimension of Micro Strip Antenna	56
	3.2.2	Hexagonal Shape Patch Antenna Design	57
	3.2.3	Spiral Shape Micro Strip Antenna Design	58

	3.2.4	Mushro	om Shape Patch Antenna Design	59
3.3	Simula	tion		60
3.4	Skin Ti	Skin Tissue Model		
3.5	Power]	Loss Densi	ty (SAR)	62
3.6	Flow C	hart		64
CHA	APTER 4	: RESULT	Γ AND DISCUSSION	65
4.0	Introdu	ction		65
4.1	Parame	tric Study	of Antennas with Free Space	65
	4.1.1	Hexagor	nal Shape Patch Antenna	66
	4.1.2	Spiral S	hape Micro Strip Antenna	73
	4.1.3	Mushro	om Shape Patch Antenna	83
4.2	Simula	tion Result	of an Implantable Antenna in Human	
	Arm m	odel		93
	4.2.1	Implanta	able Hexagonal Shape Patch Antenna in	
		Human	Arm Model	94
		4.2.1.1	Implantable Hexagonal Shape Patch	
			Antenna in Muscle Layer	95
		4.2.1.2	Implantable Hexagonal Shape Patch	
			Antenna in Fat Layer	98
	4.2.2	Implanta	able Spiral Shape Micro Strip Antenna	
		in Huma	an Arm Model	104
		4.2.2.1	Implantable Spiral Shape Micro Strip	
			Antenna in Muscle Layer	105
		4.2.2.2	Implantable Spiral Shape Micro Strip	
			Antenna in Fat Layer	108
	4.2.3	Implanta	able Mushroom Shape Patch Antenna in	
		Human	Arm Model	111
		4.2.3.1	Implantable Mushroom Shape Patch	
			Antenna in Muscle Layer	112
		4.2.3.2	Implantable Mushroom Shape Patch	
			Antenna in Fat Layer	115

CHA	PTER 5: CONCLUSION AND FUTURE WORK	120
5.0	Introduction	120
5.1	Conclusion	120
5.2	Future Recommendation	121

REFERENCES

122

LIST OF TABLES

1.1	Project Schedule for Final Year Project	5
2.1	Comparison of Different Feeding Techniques	22
2.2	Comparison of Various Type of Micro-strip Antenna	25
2.3	Advantages and Disadvantages of Micro-strip Patch Antenna	26
2.4	Table of Performance Parameter of Meandered PIFA	40
2.5	Effect of dielectric material on the resonance frequency, and	
	reflection coefficient at 403 MHz	42
2.6	Radiated power and radiation efficiencies of the implanted dipole	50
2.7	A comparison of the volume occupied by MICS implantable	
	patch antennas reported in the literature, with respect to the	
	miniaturization techniques employed	52
3.1	Design Specification	54
3.2	Characteristics of Substrates	56
4.1	Parameter of Hexagonal Shape Patch Antenna	67
4.2	Parameter of Spiral Shape Micro Strip Antenna	74
4.3	Number of Spiral with the corresponding Resonant Frequency	76
4.4	Parameter of Mushroom Shape Patch Antenna	84
4.5	Analyzing between Antenna Parameters at Free Space	91
4.6	Equation for Return Loss, VSWR and Reflection Coefficient	92
4.7	Dielectric Properties and Thickness of the Body tissues of the	
	Human Arm Model	94
4.8	Analyzing of Hexagonal Shape Patch Antenna Parameters at Free	
	Space and in Human Arm Model	101
4.9	Dielectric Properties and Thickness of the Body tissues of the	
	Human Arm Model	104
4.10	Dielectric Properties and Thickness of the Body tissues of the	
	Human Arm Model	111
4.11	Analyzing of Spiral Shape Micro Strip Antenna and Mushroom	
	Shape Patch Antenna Parameters at Free Space and in Human Arm	118

LIST OF FIGURES

2.1	Log- Periodic Antenna	8
2.2	Wire antenna	9
2.3	Travelling Wave Antenna (Helical Antenna)	9
2.4	Two-dimensional normalized field pattern (linear scale),	
	power pattern (linear scale), and power pattern (in dB)	13
2.5	Graphical Depiction of Polarization Orientation	15
2.6	Micro strip line feed	18
2.7	Probe fed rectangular micro strip patch antenna	19
2.8	Aperture-coupled feed	20
2.9	Proximity-coupled Feed	21
2.10	Structure of a Micro Strip Patch Antenna	23
2.11	Common shapes of micro strip patch elements	24
2.12	Illustration of a biomedical antenna application based on an	
	implantable RF system	29
2.13	A patch antenna in its basic form	32
2.14	Simplified body model for the design of planar antennas	
	implanted in a human body	36
2.15	Meandered PIFA configuration	37
2.16	3D illustration of the Meandered PIFA in CST Microwave	
	Studio environment	37
2.17	3D farfield radiation pattern of the proposed meandered PIFA	
	at 403 MHz	38
2.18	Simulated and measured return-loss characteristics of	
	meandered PIFA	38
2.19	Reflection coefficient of the proposed meandered antenna	
	resonating at 403 MHz	39
2.20	H-plane radiation pattern of the proposed meandered PIFA	

	$(\theta = 0^{\circ})$ at 403MHz	39
2.21	E-plane radiation pattern of the proposed meandered PIFA (θ =	
	90°) at 403 MHz	40
2.22	Reflection coefficient responses for different dielectric	41
2.23	Reflection coefficient responses for different fat phantom sizes	43
2.24	The structure of 27mm truncated cardioid antenna and designed	
	cardioid antenna	44
2.25	The return loss of cardioid patch antenna at truncation	
	0,19,18,27	44
2.26	Far field pattern of xviiardioids patch antenna at 6.25GHz and	45
2.27	Accuracy evaluation of the spherical DGF	46
2.28	Spherically six-layer head model used in the spherical DGF	
	code	46
2.29(a)	Three-dimensional FDTD head model without a shoulder	
	represented by different dielectric constants	47
2.29(b)	Sagittally sectional FDTD head model represented by	
	different dielectric constants	47
2.30	Three-dimensional FDTD head model with a shoulder for a	
	dipole implanted at the center of the real human head.	47
2.31	Comparisons of the near-field distributions for the implanted	
	dipole	48
2.31	Comparison of the spherical DGF and FDTD horizontal far-	
	field patterns for the implanted dipole	49
2.32	Three-dimensional FDTD human body used for the	
	implanted antenna design in a human chest	51
2.33(a)	Three-layer Simplified planar geometries for the design of low-	
	profile antennas, implanted in the human chest geometry	51
2.23(b)	One-layer geometry Simplified planar geometries for the design	
	of low-profile antennas, implanted in the human chest	
	geometry	51

3.1 (a)	Front View of Antenna	57
3.1 (b)	Back View of Antenna	57
3.1 (c)	Side View of Antenna	57
3.2 (a)	Front View of Antenna	58
3.2 (b)	Back View of Antenna	58
3.2 (c)	Side View of Antenna	58
3.3 (a)	Front View of Antenna	59
3.3 (b)	Back View of Antenna	59
3.3 (c)	Side View of Antenna	59
3.4	Implantable Antenna Position in Two Different Skin Tissues	65
3.5	Frequency Spectrum	63
3.6	Flow Chart	64
4.1 (a)	Front View of Antenna Dimension	66
4.1 (b)	Back View of Antenna Dimension	66
4.1 (c)	Side View of Antenna Dimension	66
4.2	Design Antenna with Three Different Length of Micro Strip	
	Line (Y _o) Hexagonal Shape Patch Antenna	67
4.3	Return Loss of Antenna for Three Different Length of Micro	
	Strip Line (Y _o) Hexagonal Shape Patch Antenna	68
4.4 (a)	Bandwidth of Hexagonal Shape Patch Antenna	69
4.4 (b)	Reference Impedance of Hexagonal Shape Patch Antenna	69
4.4 (c)	Voltage Standing Wave Ratio (VSWR) of Hexagonal Shape	
	Patch Antenna	70
4.5 (a)	Result for Farfield and Directivity of Hexagonal Shape Patch	
	Antenna	71
4.5 (b)	Result for Gain and Efficiency of Hexagonal Shape Patch	
	Antenna	72
4.6 (a)	Front View of Antenna Dimension	73
4.6 (b)	Back View of Antenna Dimension	73
4.6 (c)	Spiral Shape of Antenna Dimension	74
4.6 (d)	Side View of Antenna Dimension	74
4.7	Design Antenna With Different Number of Spiral	75
4.8 (a)	Number of Spiral versus Resonant Frequency	76

4.8 (b)	Return Loss Of Antenna for Three Different Number of Spiral	77
4.9 (a)	Bandwidth of Spiral Shape Micro Strip Antenna	78
4.9 (b)	Reference Impedance of Spiral Shape Micro Strip Antenna	79
4.9 (c)	Voltage Standing Wave Ratio (VSWR) of Spiral Shape Micro	
	Strip Antenna	79
4.10 (a)	Result for Farfield and Directivity of Spiral Shape Micro	
	Strip Antenna	81
4.10 (b)	Result for Gain and Efficiency of Spiral Shape Micro Strip	
	Antenna	81
4.11 (a)	Front View of Antenna Dimension	83
4.11 (b)	Back View of Antenna Dimension	83
4.11 (c)	Stacked Shape of Antenna Dimension	84
4.11 (d)	Side View of Antenna Dimension	84
4.12	Design Antenna With Different Shape and Slots of	
	Mushroom Shape Patch Antenna	86
4.13	Design Antenna With Multiband Frequency and Return Loss	
	of Mushroom Shape Patch Antenna	86
4.14 (a)	Reference Impedance of Mushroom Shape Patch Antenna	87
4.14 (b)	Voltage Standing Wave Ratio (VSWR) of Mushroom Shape	
	Patch Antenna	87
4.15 (a)	Result for Farfield and Directivity of Mushroom Shape Patch	
	Antenna	89
4.15 (b)	Result for Gain and Efficiency of Mushroom Shape Patch	
	Antenna	89
4.16 (a)	Antenna Implant in Muscle Layer with Thickness of 4 mm	95
4.16 (b)	Simulation Result and SAR Reading of Antenna Implantable	
	in Muscle Layer of Human Arm Model	96
4.17	Return Loss of Antenna Implantable in Muscle Layer of	
	Human Arm Model	99
4.18 (a)	Result for Directivity of Implantable Antenna in Muscle	
	Layer of Human Arm Model	97
4.18 (b)	Result for Gain and Efficiency of Implantable Antenna in	

	Muscle Layer of Human Arm Model	97
4.19(a)	Antenna Implant in Fat Layer with Thickness of 2 mm	98
4.19(b)	Simulation Result and SAR Reading of Implantable	
	Antenna in Fat Layer of Human Arm Model	98
4.20	Return Loss of Implantable Antenna in Fat Layer	
	of Human Arm Model	98
4.21(a)	Result for Directivity of Implantable Antenna in Fat	
	Layer of Human Arm Model	100
4.21(b)	Result for Gain and Efficiency of Implantable Antenna in	
	Fat Layer of Human Arm Model	100
4.22 (a)	Antenna Implant in Muscle Layer with Thickness of 4 mm	105
4.22 (b)	Simulation Result and SAR Reading of Antenna Implantable	
	in Muscle Layer of Human Arm Model	105
4.23	Return Loss of Antenna Implantable in Muscle Layer of	
	Human Arm Model	106
4.24 (a)	Result for Directivity of Implantable Antenna in Muscle	
	Layer of Human Arm Model	107
4.24 (b)	Result for Gain and Efficiency of Implantable Antenna in	
	Muscle Layer of Human Arm Model	107
4.25 (a)	Antenna Implant in Fat Layer with Thickness of 2 mm	108
4.25 (b)	Simulation Result and SAR Reading of Implantable	
	Antenna in Fat Layer of Human Arm Model	108
4.26	Return Loss of Implantable Antenna in Fat Layer	
	of Human Arm Model	109
4.27 (a)	Result for Directivity of Implantable Antenna in Fat	
	Layer of Human Arm Model	110
4.27 (b)	Result for Gain and Efficiency of Implantable Antenna in	
	Fat Layer of Human Arm Model	110
4.28 (a)	Antenna Implant in Muscle Layer with Thickness of 4 mm	112
4.28 (b)	Simulation Result and SAR Reading of Antenna Implantable	
	in Muscle Layer of Human Arm Model	113
4.29	Return Loss of Antenna Implantable in Muscle Layer of	113

Human Arm Model

Result for Directivity of Implantable Antenna in Muscle	
Layer of Human Arm Model	114
Result for Gain and Efficiency of Implantable Antenna in	
Muscle Layer of Human Arm Model	114
Antenna Implant in Fat Layer with Thickness of 2 mm	115
Simulation Result and SAR Reading of Implantable	
Antenna in Fat Layer of Human Arm Model	115
Return Loss of Implantable Antenna in Fat Layer	
of Human Arm Model	116
Result for Directivity of Implantable Antenna in Fat	
Layer of Human Arm Model	117
Result for Gain and Efficiency of Implantable Antenna in	
Fat Layer of Human Arm Model	117
	Layer of Human Arm Model Result for Gain and Efficiency of Implantable Antenna in Muscle Layer of Human Arm Model Antenna Implant in Fat Layer with Thickness of 2 mm Simulation Result and SAR Reading of Implantable Antenna in Fat Layer of Human Arm Model Return Loss of Implantable Antenna in Fat Layer of Human Arm Model Result for Directivity of Implantable Antenna in Fat Layer of Human Arm Model Result for Directivity of Implantable Antenna in Fat

ABBREVIATION

MICS	Medical Implant Communication Service
ISM	Industrial Science and Medical
ECG	Electro Cardio Gram
MBAN	Medical Body Area Network
UWB	Ultra-Wide Band
FCC	Federal Communication Commission
WBAN	Wireless Body Area Network
SAR	Specific Absorption Rate
VSWR	Voltage Standing Wave Ratio
CPW	Coplanar Waveguide
MMIC	Monolithic Integrated Circuits
CST	Computer Simulation Technology
DGS	Defective Ground Structure
RL	Return Loss
Eff	Efficiency
Er	Permittivity

CHAPTER 1 INTRODUCTION

1.0 Introduction

The first chapter is introductory and clearly shows the current state-ofthe-art in implantable medical devices for medical telemetry. Essential elements of implantable devices are antennas embedded in such systems, which enable the exchange of data between implantable devices and external environment. Moreover this chapter also explain about problem statement, objectives, scope of work and project schedule.

1.1 Introduction to Title

Recently, medical implantable devices are at the center of much academic and technical research in bioengineering and science. The increasing demand for reducing the need for invasive surgical operations necessitates the use of implanted devices as a part of diagnosis and treatment procedure. In recent years, the application of the implantable antenna for building a communication link between the implanted devices and outside the human body is receiving more attention [1]. The technology can also be used in tracking both animals, humans and gathering their biological information [1]. The implanted antenna is designed to monitor the physiological parameters in human body such as body temperature, blood pressure, glucose level, etc [1]. The challenges in the way of implantable antennas are power loss in the biological tissues, the effect of the surroundings on the antenna impedance and antenna efficiency, size constraints and the difficulties of having actual measurements with the live tissues [2-4]. Antennas used to elevate cancer tissues temperature are positioned inside or outside the patients' body. The shapes of antennas depend on their locations. Indeed there are antennas implanted internally and others implanted externally [1, 12]. The electrical properties of the body tissues are frequency dependent and should be identified for the frequency of interest. The biological tissues are extremely lossy and this makes it difficult to get a reasonable level of power out of the body. In addition it is required as impedance matching of the antenna inside the human tissue [3-5].

Antennas implanted in a human body are largely applicable to biotelemetry. In order to make practical use of antennas inside a human body, resonance characteristics of the implanted antennas and their radiation signature outside the body must be evaluated through numerical analysis and measurement setup. Most importantly, the antenna must be designed with an in-depth consideration given to its surrounding environment.

Most of the research on microwave antennas for medical applications has focused on producing hyperthermia for medical treatments and monitoring various physiological parameters [7-8]. Antennas applied to elevate the temperature of cancer tissues are located inside or outside of the patient's body, and the types of antennas depend on the location. For instance, waveguide or low-profile antennas are externally positioned, and monopole or dipole antennas transformed from a coaxial cable are designed for internal use [2], [7]

In addition to medical therapy and diagnosis, telecommunications are regarded as important functions for implantable medical devices (pacemakers, defibrillators, etc.), which need to transmit diagnostic information [9]. In contrast to a number of research accomplishments related to hyperthermia, studies on antennas used to build the communication links between implanted devices and exterior instrument for biotelemetry [2].

Several frequency bands have been identified for research and commercialization of BAN communication systems, such as the 402–405 MHz Medical Implant Communication Services (MICS) band [8], the 2.4–2.48 GHz industrial, scientific, and medical (ISM) band [4], the 3.1–10.76 GHz ultra-wide band (UWB) range [10], and others. More recently, a new medical BAN (MBAN) band, which operates from 2.36 to 2.4 GHz, has been considered by the Federal Communication Commission (FCC) for its clean spectrum and low interference sources [6].

Micro strip antennas, also referred to as patch antennas, are low profile, comfortable to planar and non-planar surfaces mechanically robust when mounted on rigid surfaces, compatible with MMIC (Monolithic Microwave Integrated Circuits) designs. Micro strip antennas have a number of advantages over other antennas; they are inexpensive, lightweight and easy to integrate with accompanying electronics. In the wireless communication area, micro strip antennas are of interest for implantable applications because of their flexibility in design, conformability and shapes.

In this study, we designed a hexagonal shape patch antenna on "Rogers 3010" substrate antenna. It is designed with the concept of micro strip antenna which light weight, thin and flexible that suitable for implantation into human body for communication. The antenna operates for Medical Implant Communication Services (MICS) band at 402 MHz to 405 MHz. The study focuses on five important parameters of the antenna i.e. Return loss, gain, directivity, efficiency, low Specific Absorption Rate (SAR) for analyzing the performance in human body vicinity.

As the conclusion, a micro strip antenna will help in the future as a brainstorm to build a communication link with implanted devices to increase the capability of diagnosis and/or treatment and reduces the need for invasive surgical operations. It is pivotal to establish a low profile, small, safe and cost effective antenna in order to be utilized inside a realistic human body environment.

1.2 Problem Statement

Currently, the medical treatments facing difficulties in monitoring patient healthcare information by using wire transmission due to its limited in communication range. Mostly, the challenges in the way of implantable antennas are power loss in the biological tissues, the effect of the surrounding in the antenna impedance and antenna efficiency, size constraints and the difficulties of having actual measurement with the live tissues. So this proposed antenna-enabled biotelemetry for implants is gaining considerable attention in an attempt to overcome the limitations of inductive biotelemetry related to low data rate, and restricted communication range. Implantable antenna design attracts high scientific interest to deal with the challenges of miniaturization, biocompatibility, impedance-matching, reliable data exchange and patient safety. The healthcare monitoring system, with a wireless implantable device is to provide reliable information from inside of the human body to an external Base Station (BS) or subsequently a smart phone. Physiological signals are obtained by means of appropriate transducers, then postprocessed, and eventually transmitted to exterior monitoring/control equipment for analysis by the operator.

1.3 Objectives

The main objectives of the research are:-

- a. To design a patch antenna with low profile, small, safe and cost effective which implant into human body for several medical applications.
- b. To propose of simplified geometries for low-profile antennas implanted in the human body tissue which is fat and muscle.