

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF REMOTE TERMINAL UNIT (RTU) FOR POWER QUALITY MONITORING SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Power) with Honours

By

NOR IZHANI BINTI ZAINAL B071410798 930417-08-5224

FACULTY OF ENGINEERING TECHNOLOGY 2017

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: DEVELOPMENT OF REMOTE TERMINAL UNIT (RTU) FOR **POWER QUALITY MONITORING SYSTEM**

SESI PENGAJIAN: 2017/18 Semester 1

Saya NOR IZHANI BINTI ZAINAL

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

SULIT TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	Disahkan oleh:
Alamat Tetap: Batu 15, Kampung Gunung F	Cop Rasmi:
31600 Gopeng,	
Perak Darul Ridzuan.	
Tarikh:	Tarikh:
	TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi kali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

DECLARATION

I hereby, declared this report, entitled "DEVELOPMENT OF REMOTE TERMINAL UNIT (RTU) FOR POWER QUALITY MONITORING SYSTEM" is the results of my own research except as cited in references.

Signature	:
Author's name	: NOR IZHANI BINTI ZAINAL
Date	:

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirement for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

.....

(MR. AHMAD IDIL BIN ABDUL RAHMAN)

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved parents

Zainal bin Mohd Yusof Kamariah binti Saad

Siblings

Muhammad Hafizuddin bin Zainal Nor Zalika binti Zainal

Muhammad Hafizi bin Zainal

Muhammad Hazman bin Zainal

Muhammad Haikal bin Zainal

Supervisor

Mr. Ahmad Idil bin Abdul Rahman

Co-Supervisor

Mr. Johar Akbar bin Mohamat Gani

Thank you very much for the support, love, encouragement, help and blessing.

ACKNOWLEDGEMENT

First and foremost, I would like to praise ALLAH S.W.T for His blessing. He gave me physical and mental strength to carry on my final year project up to completion.

I would like to express gratitude and thanks to my supervisor, Mr. Ahmad Idil bin Abdul Rahman for his supervision, encouragement, guidance, advice and unfailing patience through the duration of the project. His encouragement and guidance are truly appreciated. Not to forget my co-supervisor Mr. Johar bin Akbar who also encouraged me to complete this project. Otherwise, this project has not been possible to achieve the objective.

I also would like to express my big thanks and deepest gratitude from the bottom of my heart to my fiancé, Lokman Shaari and his family, also to all my friends for their supports, encouragements and inspiration I obtain through the duration of this project.

Last but not least, I would like to express my deepest and gratefulness to my family, especially my parent for giving me their full support, understanding and patience. Without their support, I would not have been able to finish my bachelor degree project. Their support and lovely companionship are important source of strength for me.

ABSTRACT

This project introduces the design and development of a low cost Remote Terminal Unit (RTU) for power quality monitoring system to increase the reliability of power for the consumers. RTU plays an important role in detecting fault and assigned to send message immediately to the control room. The RTU provides monitoring fault operation and data collection for analysis. The design of this project will be focused on developing a comprehensive set of basic models to simulate voltage sag using MATLAB/SIMULINK with SimPowerSystems. The microchip will be programmed to a specific type of fault for the condition voltage sag when it receives data from MATLAB/SIMULINK. After that, the status is shown in the LCD display and XBee will send the information to control room operators to alert them on the current situation via Graphical User Interface (GUI). Finally, the system is able to detect either voltage sag or normal voltage and ready to be interfaced with complete Remote Terminal Unit.

i

ABSTRAK

Projek ini memperkenalkan reka bentuk dan pembangunan Unit Pemantauan Jarak Jauh (RTU) kos rendah untuk sistem pemantauan kualiti kuasa bagi meningkatkan kebolehpercayaan kuasa kepada pengguna. RTU memainkan peranan penting dalam mengesan kesalahan dan ditugaskan untuk menghantar mesej dengan segera ke bilik kawalan. RTU menyediakan pemantauan operasi kesalahan dan pengumpulan data untuk analisis. Reka bentuk projek ini akan memberi tumpuan kepada membangunkan satu set model asas yang komprehensif untuk mensimulasikan voltan lendut menggunakan MATLAB/SIMULINK. Microchip akan diprogramkan kepada beberapa jenis kesalahan khusus untuk keadaan voltan lendut apabila ia menerima data dari MATLAB/SIMULINK. Selepas itu, status kesalahan tersebut akan dipaparkan dalam paparan LCD dan XBee akan menghantar maklumat tersebut ke bilik kawalan untuk memberi amaran kepada mereka mengenai keadaan semasa melalui Paparan Grafik (GUI). Akhirnya, sistem ini dapat mengesan sama ada voltan lendut atau voltan biasa dan bersedia untuk dihubungkan dengan Unit Pemantauan Jarak Jauh yang lengkap.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGES
	DECLARATION	
	APPROVAL	
	DEDICATION	
	ACKNOWLEDGEMENT	
	ABSTRACT	i
	ABSTRAK	ii
	TABLE OF CONTENTS	iii
	LIST OF FIGURES	vi
	LIST OF TABLES	ix
	LIST OF SYMBOLS & ABBREVIATIONS	х
	LIST OF APPENDICES	xii
1	INTRODUCTION	1
	1.0 Introduction	1
	1.1 Background	2
	1.2 Problem Statement	3
	1.3 Objectives	5
	1.4 Scope	5
	1.5 Report Outline	6
2	LITERATURE REVIEW	7
	2.0 Introduction	7
	2.1 Power Quality	7
	2.1.1 Power Quality Issues	8
	2.1.2 Voltage Sag	10
	2.2 Past and Current Power Quality Monitoring	15
	2.3 Past and Current Remote Terminal Unit (RTU) Development	17
	2.4 Remote Terminal Unit (RTU) for Power Quality Monitoring	20
	in Distribution Automation System	

CHAPTER	TITLE	PAGES
	2.5 Overview Proteus 7 Professional	22
	2.6 Overview MATLAB/Simulink	22
	2.7 Overview Arduino Microcontroller	23
	2.8 Overview XBee Wireless Communication	25
	2.9 Overview X-CTU	27
	2.10 Overview Graphical User Interface (GUI)	27
	2.11 Summary	29
3	METHODOLOGY	30
	3.0 Introduction	30
	3.1 Hardware Development	33
	3.1.1 Remote Terminal Unit	34
	3.2 Software Development	45
	3.2.1 MATLAB and Simulink Software	45
	3.2.2 Arduino Microcontroller Software	70
	3.2.3 Microsoft Visual Basic Software	72
	3.2.4 X-CTU Software	75
	3.3 Summary	80
4	RESULT AND DISCUSSION	81
	4.0 Introduction	81
	4.1 Hardware Development	81
	4.2 RTU Specification	83
	4.3 Software Development	84
	4.4 GUI Interfacing	84
	4.5 Overall RTU System	84
	4.6 Fault Detection	87
	4.7 Data History	98
	4.8 Analysis the Optimum Value of Window Length	99
	4.9 Summary	106

5	CONCLUSION AND RECOMMENDATION	107
	5.0 Summary	108
	5.1 Attainment of Research Objective	108
	5.2 Significance of Research Outcomes	109
	5.3 Difficulties Encounter during Research	109
	5.4 Recommendation for Future Research	110
	REFERENCES	112

APPENDICES 115

v

Figure	Title	Page
1.1	Voltage Sag Waveform	3
2.1	Normal Voltage Waveform	9
2.2	Voltage Sag Waveform	9
2.3	Types of Voltage Sag	12
2.4	Power Quality Monitoring Steps	17
2.5	The Block Diagram of The Proposed R.T.U	19
2.6	ISIS7 Professional	22
2.7	MATLAB/Simulink	23
2.8	Arduino Microcontroller	24
2.9	XBee Module	25
2.10	Mode of Operation XBee RF Module	26
2.11	Microsoft Visual Basic 10	28
3.1	Project Development Flowchart	31
3.2	The RTU System via XBee Wireless Module	33
3.3	RTU Flowchart	34
3.4	RTU Hardware Block Diagram	35
3.5	Schematic Circuit Design Using Proteus Simulation	35
3.6	Arduino UNO Pins	37
3.7	System Data Flow Diagram in a UART-Interfaced	39
3.8	XBee Connected to The Microcontroller	41
3.9	Starter Kit XBee with XBee Module	42
3.10	LCD Display	42
3.11	RTC I2C DS1307	43
3.12	RTC Circuit	44
3.13	Software Development Block Diagram	45
3.14	The Default Display after The MATLAB is Opened	48
3.15	Create a Folder for Example PSM	48
3.16	Selection of Simulink Icon to Open Simulink	49
3.17	Simulink Library Browser	48
3.18(a)	Simulink Model for L-L-L-GFault (Substation A)	50
3.18(b)	Instantaneous waveform L-L-L-G Fault (Substation A)	50
3.19(a)	Simulink Model for L-G Fault (Substation A)	51
3.19(b)	Instantaneous Waveform L-G Fault (Substation A)	51

Figure	Title	Page
3.20(a)	Simulink Model for L-L-G Fault (Substation A)	52
3.20(b)	Instantaneous Waveform L-L-G Fault (Substation A)	52
3.21(a)	Simulink Model for L-L-L-G Fault (Substation B)	53
3.21(b)	Instantaneous Waveform L-L-L-G Fault (Substation B)	5
3.22(a)	Simulink Model for L-G Fault (Substation B)	54
3.22(b)	Instantaneous Waveform L-G Fault (Substation B)	54
3.23(a)	Simulink Model for L-L-G Fault (Substation B)	55
3.23(b)	Instantaneous Waveform L-L-G Fault (Substation B)	55
3.24	Example Value of Scope Data	56
3.25	The Default Displays After the MATLAB is Opened	57
3.26	Create a Folder for Example PSM 1	57
3.27	Window of Editor for Writing The Program	58
3.28	Example of MATLAB Coding for RTU System	58
3.29	Output Waveform Occurred from L-L-L-G Fault (Substation A)	59
3.30	Output Waveform Occurred from L-G Fault (Substation A)	60
3.31	Output Waveform Occurred from L-L-G Fault (Substation A)	61
3.32	Output Waveform Occurred from L-L-L-G Fault (Substation B)	62
3.33	Output Waveform Occurred from L-G Fault (Substation B)	63
3.34	Output Waveform Occurred from L-L-G Fault (Substation B)	64
3.35	Selection Input of The RTU System	65
3.36	Guide Command in MATLAB Window	66
3.37	The Blank GUI (Default)	66
3.38	The Editor Layout	67
3.39	The GUI Control Panel	67
3.40	Push Button Added to GUI	69
3.41	The GUI Setting	69
3.42	Complete layout of GUI	70
3.43	Arduino software (IDE)	71
3.44	The Default Window Display After the Arduino Icon is Opened	71
3.45	Flowchart of Arduino Coding for RTU system	72
3.46	Flowchart of RTU Monitoring System	73
3.47	Main Screen for Monitoring System	74
3.48	The screen of the GUI	75
3.49	Connection SKXBee with USB Cable	76

Figure	Title	Page
3.50	Setup X-CTU	76
3.51	Radio Modules Setting	77
3.52	XBee Transmitter Configuration	78
3.53	XBee Receiver Configuration	78
3.54	XBee Transmitter Console Log	79
3.55	XBee Receiver Console Log	79
4.1	RTU Prototype	82
4.2	RTU Casing	82
4.3	MATLAB GUI to Test the Fault	85
4.4	GUI Interfacing at the Control Room	86
4.5	Overall RTU System	86
4.6	The Type of Fault Selection Window	87
4.7	L-L-G Fault Model Selection	88
4.8	Capture Data Plant A is Clicked	88
4.9	Data Analysis Status	89
4.10	Phase A Had Been Disturbed	89
4.11	Phase B Had Been Disturbed	90
4.12	Phase C Had Been Disturbed	90
4.13	Executed Plant Button to Send the Fault Directly	91
4.14	Voltage Sag Disturbances Detected	91
4.15	L-L-L-G Fault Displayed	92
4.16	System Monitoring At Control Room	93
4.17	Save Button at The Main Display of GUI	94
4.18	System Without Any Fault Occurring	94
4.19	L-L-G fault at Substation A	95
4.20	L-G fault at Substation A	96
4.21	L-L-L-G fault at Substation B	97
4.22	L-L-G fault at Substation B	97
4.23	L-G fault at Substation B	98
4.24	Constructed Text File	99
4.25	Example Waveform to Calculate the RMS	100
4.26	Normal waveform detected as sag when N=16	101
4.27	Normal waveform detected as sag when N=32	102
4.28	Normal waveform detected as sag when N=64	102
4.29(a)	Normal waveform detected as Normal when N=128	103
4.29(b)	Sag waveform detected as Sagl when N=128	103

Figure	Title	Page
4.30(a)	Normal waveform detected as Normal when N=256	104
4.30(b)	Sag waveform detected as Sag when N=256	104

LIST OF TABLES

Table	Title	Page
2.1	Category and Typical Event Characteristic Defined by The IEEE	9
2.2	Transformer Winding Connection	14
3.1	Pin Configuration for X-Bee Module	40
3.2	XBee Addressing for Transparent Mode	41
3.3	Examples of Sag Vectors for ABC Classification	46
3.4	List of GUI Component	68
4.1	RTU Specifications	83
4.2	Comparison of Window Length Testing	105

LIST OF SYMBOLS & ABBREVIATIONS

CAN	-	Controller Area Network	
DAS	-	Distribution Automation System	
DNP	-	Distributed Network Protocol	
GSM	-	Global System for Mobile Communication	
GUI	-	Graphical User Interface	
HMI	-	Human Machine Interface	
I/O	-	Input/Output	
IEC	-	International Electro-Technical Commission	
IEEE	-	Institute of Electrical and Electronics Engineers	
kV	-	kiloVolt	
LG	-	Line-to- Ground	
LLG	-	Line-to-Line-to-Ground	
LLLG	-	Line-to-Line-to-Ground	
LV	-	Low Voltage	
MODEM	-	Modulator/Demodulator	
ms	-	millisecond Second se	
mV	-	milliVolt	
PIC	-	Peripheral Interface Controller	
PQ	-	Power Quality	
PQM	-	Power Quality Monitoring	
pu	-	Per Unit	
RMS	-	Root Mean Square	
RTU	-	Remote Terminal Unit	
SCADA	-	Supervisory Control and Data Acquisition	
TCP/IP	-	Transmission Control Protocol/Internet Protocol	
TNB	-	Tenaga Nasional Berhad	
UTeM	-	University Technical Malaysia Melaka	
V	-	Volt	
VB	-	Visual Basic	
VB	-	Visual Basic	
VRMS	-	Voltage Root Mean Square	
WLAN	-	Wireless Local Area Network	
WPAN	-	Wireless Personal Area Network	

LIST OF APPENDICES

APPENDIX	А	Arduino Uno
APPENDIX	В	XBee Module
APPENDIX	С	RTC DS 1307

CHAPTER 1 INTRODUCTION

1.0 Introduction

This beginning chapter will explain about the project background, problem statement, scope, expected results and objectives with regard to this project.

1.1 Background

Nowadays, electrical power systems are very important to deliver electricity to consumers due to increasingly high demand for energy consumption. Generation, transmission, distribution and load (consumers) is a part of the electrical power system. There are two voltage level networks in electrical power system that commissioned by Tenaga Nasional Berhad (TNB), which are transmission voltage (500kV, 275kV and 132kV) and the distribution voltage (33kV, 11kV and 400/230V) [1]. However, in Perak and Johor their distribution voltages level might also include 22kV and 6.6kV. These supply frequencies are 50Hz \pm 1%.

According to Institute of Electrical and Electronics Engineers (IEEE), Distribution Automation System (DAS) is a system that enables an electrical utility to monitor, coordinate, and operate distribution components in a real-time mode from remote locations [2]. DAS also known as systems that consist of the electrical parts or components on distribution level that operate automatically, and it is in the low voltage level. The main purpose of DAS is to remotely control the system in order to locate faults, isolate the faults and restore the supply services to the consumers [3]. Automatically monitoring, protecting and controlling switching operations is defined as the application of automation in distribution power system. This can be achieved through intelligent electronic devices (IED) in order to restore power service during fault and maintain better operating to ensure the system back to normal operations. The DAS can enhance efficiency, reliability and quality of electric service with regards to application of the utilities.

One of the vital devices for implementation of DAS is the Remote Terminal Unit (RTU). It basically allows remote monitoring and controlling of the substations. RTU plays an important role in allowing the operators at the control center to manage and operate the distribution system. It will analyze the electrical parameter at the distribution system. The data are collected from process equipment at remote locations and transferred back to the central unit to define data condition. The remote terminal unit will read the data in three conditions which are analog input, digital (status input) and digital (control outputs). The data reading in an electrical parameter such as Root Mean Square (RMS) value of voltage and current, frequency, temperature and power [5].

In this project, the fault tested on the RTU board is the Three Phases to Ground Fault (L-L-L-G), Single Line to Ground (L-G) and Double Line to Ground (L-L-G) fault which are causes from the voltage sag disturbances. This fault coming from power quality disturbances, thus the power quality disturbance should be monitored by using RTU to ensure the good quality of electric services. Generally, power quality is defined as the electrical network's ability to supply a clean and stable power to consumer. Besides that, power quality creates a perfect power supply that is always available, has a pure noise-free sinusoidal wave shape and is always in range of their standard frequency and voltage. However, with increasing the energy demands from various industrial processes, many loads frequently impose to these disturbances [4].

Voltage sags is considered one of the harmful power quality problems because it affects the stable operation of several types of end-user equipment. This issue is known as short-duration reduction in RMS voltage caused by events such as power failure from a fault, load variations and the start of large induction motors or load. Based on IEEE standard 1159/95, sag or dip is a decrease to between 0.1 per-unit (pu) and 0.9 pu in RMS voltage or current at the power frequency for durations of 0.5 cycles to 1 minute [7]. Figure 1.1 shows the voltage sag waveform.

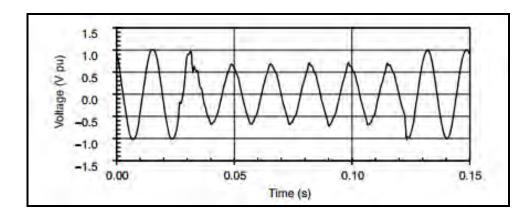


Figure 1.1: Voltage Sag Waveform [7]

Thus, this project involved the development of RTU where it is suitable to use in power system distribution. However, this project will only consider the normal voltage and voltage sag disturbances.

1.2 Problem Statement

In an electricity network, there are many causes of power failures including faults at power stations, electrical transmission line, substations or distribution system such as overloading and short circuit of electricity mains due to power quality disturbances. All these causes take a longer time for fault detection and due to lack of the implementation of distribution automation system. It will affect the manufacturing sectors and residential areas. For manufacturing sectors, it can lead to economic problems and instability while for residential areas, it can cause extensive damage to home appliances. It may take a longer time for Tenaga Nasional Berhad's (TNB's) engineers or technicians to investigate the cause of interruption whether the customers may report to TNB because the fault cause the system is complex to handle and may require higher number of manpower to fix the fault.

Thus, it is necessary to design and develop a Remote Terminal Unit (RTU) which can detect and monitor the type of fault and power quality disturbances. The RTU can also be implemented in different applications especially in distribution automation system. The existing RTU is very expensive and it is only limited to be used for certain applications or purpose which are compatible with its program setting. Imported RTU costs more due to shipping fees, taxes, and need the requirement to hire an instructor for first time users.

Hence, the developed system presented by this project are aimed to:

- 1. Save time for fault detection, isolation and distortion.
- 2. Save cost and time to investigate the cause of interruption.
- 3. Reduce the number of man-power needed for onsite substation inspections, adjustments, data collection and system monitoring.

1.3 Objectives

The objectives of this project consist of three main aims which are:

- 1. To simulate and analyze the model of power quality disturbances using MATLAB Simulink.
- To make a system that can monitor and detect type of faults and disturbances by using Arduino UNO with Visual Basic (VB) interface for power quality monitoring system.
- 3. To perform testing and analysis of the complete RTU system.

1.4 Scope

This project is restricted to:

- 1. Only for low voltage distribution automation system of 400/230V.
- 2. The RTU used is based on microcontroller with Arduino UNO and the GUI interfacing is run using Visual Basic (VB).
- 3. The communication link is based on wireless protocol using XBee communication.

The limitation of RTU design is only focused on detecting and monitoring normal voltage and voltage sag disturbances (fault type A, B and E). The designed Graphical User Interface (GUI) is limited to the capability of visual the basic (VB) and its customization features.

1.5 Report Outline

This report contains five chapters. An overview of Distribution Automation System, Remote Terminal Unit and Power Quality Monitoring System are described in Chapter 1. The problem statement, objectives and scope of work also including in this chapter. Chapter 2 is a Literature Review presents an overview of design and development of Remote Terminal Unit. This includes the past and current RTU development, power quality disturbances and the communication links. Chapter 3 describes the methodology of this project consist of hardware and software. The input signal for the RTU board is designed using MATLAB/Simulink software that acts as sensor in the real RTU board. Arduino software is used to program the RTU function and the Visual Basic (VB) is used to create the interface for the monitoring system. Chapter 4 will be focused on the results of this project which presents the complete board of RTU development tested in normal condition and voltage sag fault. The fault signal will be sent to the monitoring system via XBee wireless communication. Finally, Chapter 5 presents conclusions and recommendations for future work.