EFFECT OF LAYER THICKNESS AND RASTER ANGLE ON TENSILE PROPERTIES OF CARBON FIBER REINFORCED ABS PRINTED PART

MUHAMAD FARID BIN RAZALI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

EFFECT OF LAYER THICKNESS AND RASTER ANGLE ON TENSILE PROPERTIES OF CARBON FIBER REINFORCED ABS PRINTED PART

MUHAMAD FARID BIN RAZALI

A report submitted in fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering (Design and Innovation)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this project entitled "Effect of Layer Thickness and Raster Angle on Tensile Properties of Carbon Fiber Reinforced Abs Printed Part" is the result of my own work except as cited in the references

Signature:	:
Name:	:
Date:	·

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in term of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Design and Innovation).

Signature	·
Supervisor's Name	:
Date	:

DEDICATION

To my beloved mother and father

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Additive Manufacturing (AM) technologies have been developed as a fabrication method to obtain a functional parts in a short time. One of the famous AM techniques is Fused Deposition Modeling (FDM). With the advantages of minimal wastage and ease of material change, FDM is widely used in fabricating a thermoplastic parts and prototypes. Although it is well known, FDM printing material limited to acrylonitrile butadiene styrene (ABS) or poly lactic acid (PLA). This paper present the research done to determine the influence of layer thickness and raster angle on the tensile properties of ABS and on a new material, carbon fiber reinforced ABS. The sample with three different layer thicknesses (0.18mm, 0.25mm and 0.31mm) and raster angles (30°, 45° and 90°) were tested according to the ASTM D638 standard. It was found that both process parameter affect the tensile strength result. The ideal tensile properties for both material samples were found at layer thickness of 0.18mm and a raster angle of 90°. The result revealed that parts build with larger layer thickness produced lower tensile strength. To analyze the performance of carbon fiber reinforced ABS, a comparison was made between the tensile properties of 3D-printed acrylonitrile butadiene styrene (ABS) and carbon fiber reinforced ABS parts. The result shows that the highest tensile strength of ABS parts were 48% higher than those highest tensile strength for carbon fiber reinforced ABS.

ABSTRAK

Teknologi Additive Manufacturing (AM) telah dicipta sebagai kaedah fabrikasi untuk mendapatkan bahagian yang berfungsi dalam masa yang singkat. Salah satu teknik AM yang terkenal adalah Fused Deposition Modeling (FDM). Dengan kelebihan pembaziran yang minimum dan memudahkan perubahan material, FDM digunakan secara meluas dalam menghasilkan bahagian termoplastik dan prototaip. Walaupun ia terkenal, bahan cetak FDM terhad kepada acrylonitrile butadiene styrene (ABS) atau poly lactic acid (PLA). Kertas kerja ini membentangkan penyelidikan yang dilakukan untuk menentukan pengaruh ketebalan lapisan dan sudut raster ke atas sifat-sifat tegangan ABS dan bahan baru, gentian karbon bertetulang ABS. Sampel dengan tiga ketebalan lapisan (0.18mm, 0.25mm dan 0.31mm) dan sudut raster (30°, 45° and 90°) telah diuji mengikut standard ASTM D638. Ia telah mendapati bahawa kedua-dua proses parameter itu memberi kesan kepada hasil kekuatan tegangan. Sifat-sifat tegangan yang ideal untuk kedua-dua sampel bahan ditemui pada ketebalan lapisan 0.18mm dan sudut raster pada 90°. Hasilnya menunjukkan bahawa bahagian yang dibina dengan ketebalan yang lebih besar menghasilkan kekuatan tegangan yang lebih rendah. Untuk menganalisis prestasi gentian karbon bertetulang ABS, perbandingan dibuat antara sampel cetakan 3D acrylonitrile butadiene styrene (ABS) dan gentian karbon bertetulang ABS. Hasilnya menunjukkan kekuatan tegangan tertinggi bahagian ABS adalah 48% lebih tinggi daripada kekuatan tegangan tertinggi bagi gentian karbon bertetulang ABS.

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my advisor Dr. MOHD NIZAM BIN SUDIN for the continuous support of my bachelor study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this final year project. I could not have imagined having a better advisor and mentor for bachelor study.

Besides my advisor, I would like to thank the rest of my research committee: Dr. SITI NURHAIDA BINTI KHALIL, and Dr. MOHD ASRI BIN YUSUFF, for their insightful comments and encouragement, but also for the hard question which helped me to widen my research from various perspectives.

My sincere thanks also goes to technician at Fasa B laboratory who provided me an opportunity and gave access to the laboratory and research facilities. I also want to say a big thank you to student master named SITI MARYAM BINTI MD NOR, who act like my second supervisor and taught me a lot to prepared this research. Without they precious support it would not be possible to conduct this research.

I thank my fellow lab mates in for the stimulating discussions, for the sleepless nights we were working together before deadlines, and for all the fun we have had in the last four years. Also I thank my friends in the following institution; UNIVERSITI TEKNIKAL MALAYSIA MELAKA.

Last but not the least, I would like to thank my family: my parents and to my brothers and sister for supporting me spiritually throughout writing this research and my life in general.

TABLE OF CONTENT

CHAPTER	CON	TENT	PAGE
	DEC	LARATION	
	DED	DICATION	
	ABS	TRACT	i
	ABS	TRAK	ii
	ACK	NOWLEDGEMENT	iii
	ТАВ	LE OF CONTENT	iv
	LIST	FOF TABLES	vii
	LIST	FOF FIGURES	ix
	LIST	FOF APPENDICES	Х
	LIST	Γ OF ABBREVIATIONS	xiv
	LIST	FOF SYMBOLS	XV
CHAPTER 1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	3
	1.3	Objective	3
	1.4	Scope Of Project	3
CHAPTER 2	LITI	ERATURE REVIEW	4
	2.1	Introduction	4
	2.2	Rapid prototyping	5
		2.2.1 Fused Deposition Modeling (FDM)	8
	2.3	ABS (Acrylonitrile Butadiene Styrene) and its	11
		tensile strength	
	2.4	Carbon and its tensile strength	12

	2.5	FDM process parameter	13
	2.6	Tensile test	17
		2.6.1 ASTM D638	18
	2.7	Effect of layer thickness and raster angle on	19
		tensile test	
CHAPTER 3	МЕТ	THODOLOGY	20
	3.1	Introduction	20
	3.2	Quantitative approach	24
	3.3	Sample Preparation	24
		3.3.1 Computer Aided Design (CAD)	24
		3.3.2 Flashprint (STL file)	27
		3.3.3 Flashforge 3D printer (FDM)	28
	3.4	Selection of parameter	30
	3.5	Data tabulation table	31
	3.6	Research test	33
		3.4.1 Tensile test machine setup	33
CHAPTER 4	RES	ULTS AND DISCUSSION	35
	4.1	Introduction	35
	4.2	Effect of layer thickness on tensile properties of Pure ABS	35
	4.3	Effect of raster angle on tensile properties of Pure ABS	40
	4.4	Effect of layer thickness on tensile properties of Carbon Fiber Reinforced ABS	44
	4.5	Effect of raster angle on tensile properties of Carbon Fiber Reinforced ABS	48
	4.6	Comparison of ABS and Carbon fiber reinforced ABS	52

CHAPTER 5	CONCLUSION AND RECOMMENDATION	57
	REFERENCE	59
	APPENDICES	63

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Historical development of rapid prototyping and related technology	5
4.1	ABS printed samples tensile properties result for different layer thickness of 30^0 raster angle	36
4.2	ABS printed samples tensile properties result for different layer thickness of 45 ⁰ raster angle	37
4.3	ABS printed samples tensile properties result for different layer thickness of 90^{0} raster angle	37
4.4	ABS printed samples tensile properties result for different raster angle of 0.18 layer thickness	40
4.5	ABS printed samples tensile properties result for different raster angle of 0.25 layer thickness	41
4.6	ABS printed samples tensile properties result for different raster angle of 0.31 layer thickness	41
4.7	Carbon fiber printed samples tensile properties result for different layer thickness of 30^{0} raster angle	44
4.8	Carbon fiber printed samples tensile properties result for different layer thickness of 45° raster angle.	45
4.9	Carbon fiber printed samples tensile properties result for different layer thickness of 90° raster angle	45

Carbon fiber reinforced ABS printed samples tensile properties	48
result for different raster angle of 0.18 layer thickness.	
Carbon fiber reinforced ABS printed samples tensile properties result for different raster angle of 0.25 layer thickness	49
Carbon fiber reinforced ABS printed samples tensile properties result for different raster angle of 0.31 layer thickness	49
	Carbon fiber reinforced ABS printed samples tensile properties result for different raster angle of 0.18 layer thickness. Carbon fiber reinforced ABS printed samples tensile properties result for different raster angle of 0.25 layer thickness Carbon fiber reinforced ABS printed samples tensile properties result for different raster angle of 0.31 layer thickness

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Rp process chain showing fundamental process step	6
2.2	Generalized illustrated of data in RP	7
2.3	Principle of Fused Deposition Modelling technology	9
2.4	Fused Deposition Modelling general process	10
2.5	Tensile stress-strain curves with different percentage of carbon	12
2.6	Orientation part Height of layer thickness	13
2.7	Raster angle parameter	14
2.8	Percentage of process parameter influence	15
2.9	Height of layer thickness Raster width	15
2.10	Effect of layer thickness on build time and	16
2.11	Engineering stress-strain graph	17
2.12	ASTM D638- Dogbone specimen	18
2.13	Different raster angle with 0.254 Layer Thickness	19
2.14	Different raster angle with 0.33 Layer thickness	19
3.1	The Flow chart of planning and methodology of the research	23
3.2	Dog bone specimen ASTM D638 created in CAD	25

LIST OF FIGURES

FIGURE	TITLE	PAGE
3.3	The process parameter setting in Flashprint	27
3.4	The STL file of dog bone open in Flashprint	28
3.5	The dog bone specimen print with Flashforge 3D printer	29
3.6	Linear pattern strength	30
3.7	Tensile test setup	33
3.8	(a) The ABS specimen being clamped and stretched until fracture	34
3.8	(b) the result of tensile properties display on computer	34
4.1	ABS with different layer thickness of 30 ⁰ raster angle	38
4.2	ABS with different layer thickness of 45 ⁰ raster angle	38
4.3	ABS with different layer thickness of 90 ⁰ raster angle	39
4.4	ABS with different raster angle of 0.18mm layer thickness	42
4.5	ABS with different raster angle of 0.25mm layer thickness	42
4.6	ABS with different raster angle of 0.31mm layer thickness	43
4.7	Carbon fiber reinforced ABS with different layer thickness of	46
4.8	30° raster angle Carbon fiber reinforced ABS with different layer thickness of 45° raster angle	46

LIST OF FIGURES

FIGURE	TITLE	PAGE
4.9	Carbon fiber reinforced ABS with different layer thickness of 90°	47
	raster angle	
4.10	Carbon fiber reinforced ABS with different raster angle of	50
	0.18mm layer thickness	
4.11	Carbon fiber reinforced ABS with different raster angle of	50
	0.25mm layer thickness	
4.12	Carbon fiber reinforced ABS with different raster angle of	51
	0.31mm layer thickness	
4.13	(a) acrylonitrile butadiene styrene	52
4.13	(b) Carbon fiber reinforced ABS	52
4.14	Comparison between two materials with the highest difference in	53
	tensile strength	
4.15	Comparison between two materials with the lowest difference in	54
	tensile strength	
4.16	Comparison on tensile property of layer thickness between	56
	acrylonitrile butadiene styrene (ABS) and Carbon fiber reinforced	
	ABS	
4.16	Comparison on tensile property of raster angle between	56
	acrylonitrile butadiene styrene (ABS) and Carbon fiber reinforced	
	ABS	

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	Tensile Test for Pure ABS A1	63
A2	Tensile Test for Pure ABS A2	64
A3	Tensile Test for Pure ABS A3	65
A4	Tensile Test for Pure ABS B1	66
A5	Tensile Test for Pure ABS B2	67
A6	Tensile Test for Pure ABS B3	68
A7	Tensile Test for Pure ABS C1	69
A8	Tensile Test for Pure ABS C2	70
A9	Tensile Test for Pure ABS C3	71
B1	Tensile Test for Carbon Reinforced ABS A1	72
B2	Tensile Test for Carbon Reinforced ABS A2	73
B3	Tensile Test for Carbon Reinforced ABS A3	74
B4	Tensile Test for Carbon Reinforced ABS B1	75
В5	Tensile Test for Carbon Reinforced ABS B2	76
B6	Tensile Test for Carbon Reinforced ABS B3	77
B7	Tensile Test for Carbon Reinforced ABS C1	78
B8	Tensile Test for Carbon Reinforced ABS C2	79

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
B8	Tensile Test for Carbon Reinforced ABS C3	80
C1	ASTM D638 Dimensioning	81

LIST OF ABBEREVATIONS

CAD	Computer Aided Design
FDM	Fused Deposition Modeling
ABS	Acrylonitrile butadiene styrene
STL	Stereolithography
PLA	Poly Lactic Acid
RP	Rapid Prototyping
DOE	Design Of Experiments
PEEK	Polyther Ether Ketone
MPa	Mega pascal

C Universiti Teknikal Malaysia Melaka

LIST OF SYMBOL

0	Degree
3	Strain

- σ Stress
- $\delta \qquad \qquad \text{Change in length} \\$

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Cany Mendosa et al (2015) stated that Additive Manufacturing (AM) is a process where the physical stated of a model was created by the data from three-dimensional computer aided design (CAD) at a quick rate. The advantages of additive manufacturing compared to subtractive manufacturing is minimal wastage.Additive manufacturing first emerged in 1987 with stereolithography (SL). Fused deposition modeling (FDM) is one of the AM techniques that utilizes plastic materials, for example, Acrylonitrile butadiene styrene (ABS) to create models or even practical items. FDM works by depositing a molten layer that come through the heated nozzle to the build platform until it becomes the desired components. Because of the growth of this technology and limitation to the material used, it is crucial to have knowledge of the mechanical properties from the part produced, which can be different from their nominal value. In this study, the tensile strength of parts produced by FDM machine is evaluated. The test is subjected to compare between pure ABS and carbon fibre reinforced ABS specimens. ABS is comprised a versatile family of readily process able resin used for creating items displaying phenomenal strength, great dimensional solidness and good chemical resistance. Carbon fiber used in this study is a carbon fiber reinforced ABS with 15% of carbon. Back at 1879, the inventor of carbon fibre, Thomas Edison, used carbon fibres as filaments for early light bulb even though that fibres lacked the tensile strength of today's carbon fibres, the fibres are ideal for conducting electricity.

The tensile test conducted in this study was according to ASTM D638 standard. Tensile test is a fundamental type of mechanical test to get the tensile strength of the material to evaluate the maximum stress that can be withstand by a structure in tension. In this study, two process parameter selected are layer thickness and raster angle as it is founded by Fahraz et al (2014) that the layer thickness and raster angle are among the most affected parameter. According to Wenzheng et al (2015), the layer thickness which is known as the height of deposited slice from the FDM nozzle. The layer thickness parameter is used to examine the impact in creating thicker or thinner layers on the outcome quality. The direction of the beads of material relative to the loading of the part is also refers as raster angle or orientation which is measured from the x-axis on the bottom part layer. The deposited road can be built at different angle to fill the interior part. Es-Said et al (2000) declared that raster angle make the alignment of polymer atom along the direction of deposition when the tensile test, flexural and impact strength is fabricated which is depends on the orientation of the sample Sample with three different layer thickness (0.18mm, 0.25mm and 0.31mm) and raster angle (30°, 45° and 90°) were built using FDM machine and their tensile properties were tested.

1.2 PROBLEM STATEMENT

It is imperative to decide the right parameters of the FDM machine keeping in mind the end goal is to deliver a section which can satisfy the tensile properties. There are essentially some of parameters which are critical and will impact the details of the delivered part, and these parameters are the layer thickness and raster angle. The mixes of various setting of the parameters will create parts with various particulars. FDM is one the famous rapid prototyping technology, still, in most FDM equipment, they restricted to ABS and PLA printing material.

1.3 OBJECTIVE

The objectives of the project are:

- To study and understand the process parameter of FDM influencing the performance on tensile strength.
- To study and compared the tensile strength between pure ABS and carbon fiber reinforced ABS samples.

1.4 SCOPE OF PROJECT

The study covers the AM process which is the Fused Deposition Modeling (FDM). Besides that, the study also discusses about the parameters of the FDM machine and software for the CAD and STL file which is CATIA software and Flashprint. The focus for this study are the layer thickness and raster angle. The parameters upgraded with a specific end goal to accomplish great execution regarding tossing separation. The material utilized as a part of delivering the part is pure ABS and Carbon fibre reinforced ABS. The universal testing machine was used to decide the tensile properties of the Specimen.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides an overview of previous research on tensile strength of the ABS and composite and also the previous knowledge that involved in the research. It introduces the frames work for the case study that comprises the main focus of the research described. The main purpose of the literature review work was to survey previous study on tensile strength of ABS and composite. This was in order to scope out the key data collection requirements for the primary research to be conducted, and it formed part of the emergent research design process, Denscombe (1998).

In this chapter, the reader will be explained about the related knowledge of the project which covers the introduction of rapid prototyping and fused deposition modeling. The detail of the material tensile strength and process parameter used that affect its mechanical properties in the previous study.