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ABSTRACT 

 

 

Heat exchangers play an important role in the performance of thermoacoustic devices. Due to 
the complexity of oscillatory flows, the interaction of sound wave energy and heat transfer in 
oscillatory flows is still not fully understood. The purpose of this study is to determine the 
effect of flow frequency on heat exchangers used in thermoacoustic system. A simple 
thermoacoustic model was developed using Computational Fluid Dynamics (CFD). Two flow 
frequencies were investigated; 13.1 Hz and 26.0 Hz. The model was validated by comparing 
the simulation results and theoretical results of x-velocity at the middle of the stack. The 
percentages of error were recorded based on axial velocity for one cycle where fluid flows 
forward and backward in a cyclic manner. During forward movement (positive value), the 
maximum error was 7.85%. As flow reversed, the maximum error became 8.85%. Laminar 
model and SST k-omega model were used for simulation of 0.30% and 0.83% drive ratios, 
respectively. The total surface heat flux at hot heat exchanger increased with increasing value 
of frequency. However, as the drive ratios increased the heat transfer performance for 26.0 Hz 
flow frequency dropped. This may be related to the effect of turbulence and vortex structures. 
The vortex structures were found distorted as flow frequency increases. Further research is 
required to study the effect of turbulence and behaviour of vortex structures. 
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ABSTRAK 

 

 

Penukar haba memainkan peranan yang penting dalam prestasi sistem termoakustik. Oleh 
kerana pengaliran ayunan yang rumit dalam sistem tersebut, interaksi antara tenaga 
gelombang bunyi dan pemindahan haba dalam aliran ini masih tidak dapat difahami dengan 
sepenuhnya. Tujuan kajian ini adalah untuk mengenalpastikan kesan kekerapan aliran yang 
digunakan pada penukar haba dalam sistem termoakustik. Sebuah model termoakustik yang 
ringkas telah diwujudkan dengan menggunakan perisian Pengkomputeran Dinamik Bendalir 
(CFD). Model ini telah disahkan dengan membandingkan kehasilan daripada simulasi CFD 
dan kehasilan teori berdasarkan x-halaju yang diletakkan di pertengahan timbunan model. 
Peratusan ralat direkodkan berdasarkan x-halaju untuk satu kitaran di mana cecair sistem 
mengalir dengan cara berkitaran. Semasa cecair mangalir ke arah hadapan, kesilapan ralat 
maksimum adalah 7.85% manakala kesilapan maksimumnya berubah menjadi 8.85% apabila 
pengaliran diterbalikkan. Model laminar digunakan untuk aliran dengan nisbah memandu 
berukuran 0.30% manakala model SST k-omega digunakan untuk nisbah memandu pada 
kadar 0.83%. Hasil kajian menujukkan jumlah permukaan fluks haba di penukar haba panas 
akan meningkat dengan peningkatan nilai kekerapan yang digunakan. Walau bagaimanapun, 
prestasi pemindahan haba untuk kekerapan aliran 26.0 Hz berkurangan apabila nisbah 
memandu dinaikkan. Ini kemungkinan berlaku disebabkan oleh kesan pergolakan dan struktur 
vorteks. Struktur vorteks ditemui berputar apabila kekerapan aliran ditambahkan. Kajian 
lanjut diperlukan untuk mengkaji kesan pergolakan dan kelakuan struktur vorteks ini.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Thermoacoustics is a system which involves the interaction between heat and sound 

wave energies. The stack with both cold and hot heat exchangers on each side is the main 

component of a thermoacoustic system where the interaction of heat and sound waves take 

places. When a fluid is flowing through an object or solid boundaries, the fluid particles will 

bump onto the wall of the solid boundaries and then heat energy will release. The space 

between the plates in the stack is important. It is just similar to a set of sandwich; the fluid 

particles are like the contents of sandwich and the solid boundaries are the sandwich bread. If 

the gaps are too small, the effects of viscous will cause the working fluid to lose much of 

energy to overcome the friction and the device will become inefficient. If the gaps are too 

large, there will be not enough contact between the gases and the solid boundaries to produce 

suitable temperature oscillations (Swift, 1988). 

The latest designs of thermoacoustic devices have the advantage of not having or 

consist of less moving parts. The term of thermoacoustics was first developed by Rott (1980) 

who came out with the theoretical approach of thermoacoustics field. The interactions between 

sound and heat energy are invisible and difficult to be revealed within everyday sound 

propagation and transmission processes. However, this interaction can be improved if the 

properties of the acoustic oscillation are improved such as oscillation with high intensity, high 

mean pressure or high drive ratio. Thermoacoustic devices are usually categorized into engine 
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systems and refrigerators. Examples of the thermoacoustic engines and thermoacoustic 

refrigerators are shown in Figure 1.1 and 1.2 respectively. The thermoacoustic engine will 

convert thermal energy caused by a temperature gradient produced from the both ends of an 

object, into acoustic energy whereas the thermoacoustic refrigerator utilizes a sound wave 

enforced along the object in order to generate the temperature gradient (Swift, 1988).  

 

 

Figure 1.1 Qnergy‟s Thermoacoustic Stirling Engine (TASE) 

(Retrieved from http://www.qnergy.com/thermoacoustic-stirling-engine-) 

 

 

Figure 1.2 TRITON Shipboard Thermoacoustic Cooler 

(Retrieved from http://www.acs.psu.edu/thermoacoustics/refrigeration/triton.htm) 
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A simple explanation about thermoacoustic engine may be explained with the aid of 

Figure 1.3 and the corresponding thermoacoustic process is shown in Figure 1.4 which is 

similar to a basic engine cycle as taught in most thermodynamics textbooks. In 

thermoacoustics, power may be produced by an engine when there is an input of high 

temperature gradient. This happens near the stack as shown in Figure 1.3. The hot and cold 

heat exchangers at both ends of the stack creates huge temperature drop. As a result, an 

acoustic oscillation occurs. This oscillation may be translated into electrical current if suitable 

conditions are met. The hot side of the stack is able to transfer energy into the gas particle in 

the form of heat as the gas particles keep colliding onto the wall of stack. The air as well as the 

heat energy, then oscillates to the low pressure point on the cold side of the stack. As the gas 

pressurizes, the gas temperature also increases. When the gas temperature on the cold side of 

stack is higher than that of the heat sink, it will transfer energy into the heat sink in form of 

heat. The air then depressurizes as it will moves back to the hot side where the cycle starts 

over again. Notice that this kind of air flow back and forth is called as oscillatory flow.  

 

 

Figure 1.3 Illustrations on position of heat exchangers and stack in a standing-wave 

thermoacoustic engine 
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Figure 1.4 Process cycle of thermoacoustic engine 

 

1.2 Problem statement 

It is important to understand the behavior of the flow and heat transfer phenomena 

inside the thermoacoustics system and develop more of this green and sustainable technology 

in our industry. Current solution used in designing the thermoacoustic system depends on a 

one-dimensional linear model. However, in practical system, the flow may consist of 

abnormalities such as flow characteristics, natural convection, streaming and vorticity. These 

effects are investigated so that a proper understanding may be gained. The study on flow 

frequency on heat exchanger in such system is also important. There are different ranges of 

frequencies that can be used for different thermoacoustics applications. As the flow frequency 

of the working fluid is changed, the physical and flow properties of the working fluid near the 

plates will also change. This may somehow affect the interaction between the heat and sound 

wave energies inside the system. The changing of geometry may also create disturbances on 

the flow. Therefore, the study on flow frequency on heat exchangers used in thermoacoustics 

system will be an interesting topic.  
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1.3 Objectives 

The objectives of this study embark:  

i. To develop thermoacoustic model using ANSYS software. 

ii. To validate the model with available published work (i.e. experimental and/or 

theoretical data). 

iii. To analyse and study the effect of flow frequency on the heat exchanger used in 

therrmoacoustics system. 

 

1.4 Scope of project 

 There are several parameters that can be discussed and varied in order to study the 

condition of heat exchanger which is the main component for the process of energy conversion 

between heat transfer and fluid flow. In this study, operating frequency of the working fluid 

which passes through the heat exchangers will be the only parameter studied. A simple model 

will be formulated by using ANSYS Fluent – Computational Fluid Dynamics (CFD) software 

for the effect of flow frequency on the heat exchanger will be carried out. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Thermoacoustics 

Thermoacoustics (TA) comes from the words of “thermo” and “acoustics” which is the 

combination of heat transfer and propagation of sound waves energy. The conversion of the 

process which involved both acoustic and thermal energies can be produced by using the 

effect of thermoacoustics.  Rayleigh (1877) was the first to give a qualitative explanation or 

description about thermoacoustic effects. In his research of “The Theory of Sound”, published 

in 1887, he discussed about the way to produce temperature differences using acoustic wave 

oscillations. His work then remained untouched for around eighty years until Rott began a 

series of research and publications. Rott (1969) became the pioneer in deriving the precise 

equations for pressure contribution, motion of particles and time-averaged in energy transport 

which occurred in a channel with a sinusoidal oscillation and a temperature gradient (Swift, 

2001). 

When the temperature of gas-filled tube decreased from room temperature to cryogenic 

temperature with spontaneous oscillations, the problem of Taconis oscillations started gaining 

attention from researches. Rott selected this problem as his first research topic to answer the 

curiosity about why the tube vibrates and sings loudly after being removed from a coolant. 

Taconis oscillation is one of the types of thermoacoustic oscillations that happen when a gas-

filled thin tube is inserted into cryogenic liquid of helium. Cryogenic is a study of production 

and behaviour of materials at very low temperatures. It can be said that when a tube is closed 
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at the warm side and the length of tube is extended from room temperature to a region of 

liquid helium temperature (very low temperature region), the large temperature gradient will 

produce Taconis oscillations (Meyer Tool & Mfg. Inc., 2011). In old centuries, Rott‟s 

approach of thermoacoustic can be considered as successful linear thermoacoustic theory as he 

formulated the fundamental mathematical concepts in order to describe the sound oscillations 

of gas particles inside a channel with an axial temperature gradient and the lateral channel 

dimensions of the gas thermal penetration depth, 𝛿𝑘 . Gas thermal penetration depth is the 

distance that heat can diffuse through the gas in a time of 1 𝜋𝑓 , where f is the frequency of 

the sound wave (Jinshah et. al., 2013). 

 

2.2 Thermoacoustic devices 

Thermoacoustic devices can functions in two ways; one is to produce work using heat 

which is called as prime mover (heat engine); another way is to produce heat by using work 

and this device is normally known as heat pump (refrigerator). The schematic diagrams of 

thermoacoustic prime mover and heat pump are shown in Figure 2.1 (a) and Figure 2.1 (b) 

respectively. Stirling engine is one type of heat engine that consists a lot of moving parts 

which operated by cyclic expansion and compression of working air at different temperatures. 

In 1969, William Beale realized that the forces acting on the connecting rods of the Stirling 

engine should be made small resulting in free-piston devices. After realizing that the time 

phase between velocity and pressure inside the Stirling engine is same as in acoustic travelling 

wave, Peter Ceperly suggested on removing every moving parts and keeping only the working 

gas itself inside the Stirling engine. Not long after that, the Los Alamos group started their 

research involving the development of standing-wave thermoacoustic engines and 
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refrigerators with different time phasing from Ceperly‟s idea and Stirling engine principle 

(Swift, 2001).  

 

 

Figure 2.1 (a) Schematic diagram of a thermoacoustic prime mover; 

Figure 2.1 (b) Schematic diagram of a thermoacoustic heat pump 

(Retrieved from https://en.wikipedia.org/wiki/Thermoacoustics) 

 

When there is a temperature gradient produced in the regenerative unit, pressure variations 

and velocity will be amplified until a steady state is achieved, a loud noise will be produced (Trapp 

et al., 2011). According to Swift (2001), there will be a parcel of working gas or fluid flowing 

across the parallel plates which are having temperature difference. The parcel of gas will absorb 

heat from hot heat exchanger on one side of the stack and then it oscillates to another side of the 

stacks and gives out the heat. Hence there will be a pressure difference on the parcel of gas. When 

the parcel is having high pressure, thermal expansion occurs and when the pressure is low thermal 

contraction takes place. The cycle will repeat and hence work will be produced. The sum of all the 

parcels in the stack is the total work produced by the engine (Swift, 2001).  
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Nowadays, thermoacoustic devices have gained more attention due to its independence on 

mechanical moving parts and hence, they became more efficient. Furthermore they can be 

powered easily with natural sources such as solar energy or waste heat energy and the working 

medium is kind of environmental-friendly. The fabrication costs of such devices are low and 

they are reliable (Piccolo, 2011). 

 

2.2.1 Thermoacoustic engines 

Yazaki et al. (1998) established the first travelling wave thermoacoustic engine (TAE) 

in the kind of looped-tube that was functioning well. Basically, the working medium that is 

used in the TAE is either pressurized air or noble gases (e.g. helium or argon). However, 

different types of liquid can also be used as working medium in the standing wave TAE 

systems such as liquid sodium, sea water or combination of gas and liquid system (Tang et al., 

2011). These kinds of working fluids are used to reduce the losses in the system which 

normally having a low Prandtl number. Prandtl number is defined as the ratio of momentum 

diffusivity to thermal diffusivity (Saechan, 2014). 

For the standing wave TAE, the gas particles will start to oscillate when the 

temperature gradient produced along the stack of parallel plates reaches a maximum value 

which is called as onset temperature gradient. The oscillations promote the energy conversion 

from heat to acoustic energy (Atchley, 1992). The acoustic power produced will overcomes 

the thermal losses inside the system. Then the amplitude of acoustic power in the resonator 

increases speedily and this will facilitates the heat transfer. The oscillation will be constant if 

the power of heating is sufficient enough and finally it will reach a steady state. Otherwise, the 

on-off process may be occurred if the heating power is only enough for its self-oscillations. 

When the temperature of the hot end stack falls under a specify value, the oscillations will stop 




