DESIGN ANALYSIS AND MODIFICATION OF FIRE FIGHTING MACHINE

NG YIN TENG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

'I/We admit that have read this work and in my/our opinion this work was adequate from the aspect of scope and quality to the meaning of Bachelor of Mechanical Engineering (Design & Innovation) Degree Programme'

Signature	·
Supervisor I Name	:
Date	:

Signature	:
Supervisor II Name	:
Date	:

i

DESIGN ANALYSIS AND MODIFICATION OF FIRE FIGHTING MACHINE

NG YIN TENG

This report is submitted as partial requirement for the completion of the Bachelor of Mechanical Engineering (Design & Innovation) Degree Programme

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > **MAY 2010**

C Universiti Teknikal Malaysia Melaka

"I hereby, declare this thesis is result of my own research except as cited in the references"

Signature	:
Author Name	: NG YIN TENG
Date	: 10 MAY 2010

To My Beloved Family Soo Har

ACKNOWLEDGEMENT

First of all, I would like to express my thankfulness to GOD because I managed to finish this report on time. Foremost, I wish to extend my heart felt thanks to Mr. Mohd. Rizal Bin Alkahari as the project supervisor who has gracefully offered his time, attention, experience and guidance throughout the completion the project. I also thank and appreciate the help from my project second supervisor Mr. Masjuri Bin Musa.

I would also like to extend my thanks to representatives from Ritz Power Sdn. Bhd., who cooperates with UTeM in the Fire Fighting Machine project. With the useful information and opinion from them, the problem regarding to the project can be overcome. Besides, I also thanks to the university library for providing lots of sources as assistant to complete the report.

I would like to thank each and every individual who have either directly or indirectly helped me throughout the efforts of this report in the form of encouragement, advice or kind reminders. Kudos goes out to family and parents who endured this long process which gave me love and support all the way. Without all the helps provided, the project might not proceed smoothly.

ABSTRAK

Dalam projek ini, analisis dan optimasi reka bentuk mesin pemadam api dijalankan dengan menggunakan perisian Computer-Aided Engineering (CAE). Tujuan utama optimasi ini adalah untuk mengurangkan berat mesin tersebut serta meningkatkan mutu operasi. Pengurangan jumlah berat mesin akan mengurangkan pengunaan tenaga serta memanjangkan tempoh operasi mesin. Projek ini menglibatkan empat unsur dalam analisi dan modifikasi reka bentuk bermula dengan formulasi masalah kepada analisis kestabilan, analisis struktur dan optimasian. Dalam formulasi, semua maklumat berkenaan mesin yang dalam kategori yang sama dikumpul. Selain itu, kajian terhadap faktor keselamatan dilakukan. Dalam analisis kestabilan, pengurangan berat maksima dikenal pasti. Pengiraan dijalankan untuk mengenal pasti moment of force pada nozzle. Tekanan maksima 12 bars digunakan sebagai tekanan aliran melalui nozzle. Hukum *Bernoulli's* telah digunakan untuk pengiraan daya dari 12 bars aliran. Pengurangan berat maksima yang dibenarkan akan dikira secara langsung daripada perbezaan antara jumlah moment kepada minimum moment dalam mengekalkan kestabilan mesin. Komponen yang mengalami berat lebihan dikenalpasti dan dianlisis menggunakan perisian SolidWorks Simulation 2009. Factor of Safety (FOS) untuk struktur mesin didapati melalui analisis struktur. Nilai FOS ini dijadikan rujukan dalam proses optimasi. Selain itu, daripada stress plot untuk hasil analisis, relatif stress tinggi dikenal pasti. Optimasi dijalankan pada mesin struktur dengan rujukan kepada hasil analisis struktur. Optimasi ini tamat pada ulangan ketiga untuk struktur nozzle dan keempat untuk struktur badan, dimana minimum nilai FOS untuk kedua-dua struktur tersebut hampir kepada nilai FOS yang ditetapkan. Kesimpulan terhadap keputusan analisis dan optimasi dihasilkan. Cadangan telah dibentang untuk kajian masa hadapan.

ABSTRACT

In this project, analysis and optimization of the current design of fire fighting machine is make using Computer-Aided Engineering (CAE) software. The main focus of the optimization is to reduce the weight of the fire fighting machine to increase its efficiency. The reduction of the total weight of the machine will lower the power consumption and expand the time of operation. In this project, use four important elements in design analysis and modification process begin with problem formulation to stability analysis, structural analysis and optimization. In formulation, all information about the similar machines is gathered. Besides, related study such as factor of safety is performed. In stability analysis, allowable reduction in mass is determined. Manual calculation is made in determining the moment of force at nozzle. The pressure of maximum 12 bars was use as water flow through the nozzle. Bernoulli's equation is used to determine the force at nozzle due to 12 bar water flow. The moment of force is determined from the force calculated. The allowable mass reduction is determined directly from the different between total moments of force to the minimum moment to maintain the machine stability. The possible overweight component is detected and analyzed using SolidWorks Simulation 2009. The current fire fighting machine's structure factor of safety (FOS) is obtained through the structural analysis. This FOS value will be the reference in optimization process. Besides, from the stress plot of the analysis result, relatively high stress area is determined. Optimization is performed on the machine's structure by reference to the result from the structural analysis. The optimization stops at third iteration for nozzle structure and fourth iteration of body structure, where the minimum factor of safety of the both structure close to the target FOS value. Conclusion base on the analysis and optimization result was done. Besides, some recommendations were proposed for future work.

TABLE OF CONTENTS

DECLARATION	iii
DEDICATION	iv
ACKNOLEDGEMENT	V
ABSTRAK	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xviii
LIST OF ABBREVIATIONS	xix
LIST OF APPENDIXES	XX
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	3
1.3 Objective	4
1.4 Scope	4
CHAPTER 2 LITERATURE REVIEW	5
2.1 Current Fire Fighting Technology	5
2.2 Current Fire Fighting Machine and Robot	7
Review	
2.2.1 LUF60 Mobile Fire Fighting	7
Supporting Unit	

PAGE

	2.2.2	Firemote Remotely Controlled	9
		Fire Fighting Machine	
	2.2.3	ARMTEC'S SACI Fire Fighting	11
		Robot	
	2.2.4	Segway Robotic Fire Fighting Robot	12
	2.2.5	JELKA-4 Fire Fighting Remote	13
		Controlled System	
	2.2.6	FFR-1 Fire Fighting and Rescue	15
		Wireless Robot	
	2.2.7	Service Robot FIREROB	17
2.3	Highli	ight of Fire Fighting Machine	19
2.4	Comp	uter-Aided Engineering(CAE)	21
	2.4.1	CAE Field	22
	2.4.2	CAE Phase	22
	2.4.3	CAE Software	23
2.5	Finite	Element Analysis (FEA)	24
	2.5.1	Application of FEA	25
	2.5.2	Advantages of FEA	25
	2.5.3	Disadvantages of FEA	26
2.6	Comp	arison of CATIA and SolidWorks	27
2.7	Solid	Works	28
	2.7.1	Modeling Methodology	28
	2.7.2	SolidWorks Simulation	29
	2.7.3	Basic Concept of Analysis	29
2.8	Factor	of Safety	31
	2.9.1	Safety Factor and Design Factor	31
	2.9.2	Factor of Safety Categorizing	32

ix

CHAPTER	ТОР	IC	PAGE
CHAPTER 3	MET	THODOLOGY	33
	3.1	Methodology Flow Chart	34
	3.2	Formulation	35
	3.3	Stability Analysis	36
	3.4	Structural Analysis	41
		3.4.1 Identify Over Weight Component	42
	3.5	Optimization	42
CHAPTER 4	STA	BILITY ANALYSIS	43
	4.1	Pressure Loss through Hose and Height	43
	4.2	Force at Nozzle	46
	4.3	Moment of Force at Nozzle	49
		4.3.1 Case 1	49
		4.3.2 Case 2	51
	4.4	Moment of Force of Machine Body	52
	4.5	Moment of Force of Nozzle Structure	53
	4.6	Result Analysis	54
		4.6.1 Case 1	54
		4.6.2 Case 2	55
		4.6.3 Reconsider Unity of Moment	56
	4.7	Result	57
CHAPTER 5	STR	UCTURAL ANALYSIS	58
	5.1	CAD Data Generation	58
	5.2	Parts Meshing Evaluation	59
	5.3	Structure Assembly	60
	5.4	Define Material Properties	61
	5.5	Define Restraint Condition	62
	5.6	Define Connector and Contact Set	63
	5.7	Define Force Condition	64
	5.8	Meshing on Structure Assembly	65
	5.9	Compute Analysis	66

C Universiti Teknikal Malaysia Melaka

xi

	5.10	Result	67
	5.11	Result Analysis	71
		5.11.1 Relatively High Tensile Stress	71
		5.11.2 Bending Stress at Main Support Bar	74
		5.11.3 Accuracy of Analysis	75
CHAPTER 6	OPT	IMIZATION	79
	6.1	Optimization Target	79
	6.2	Optimization on Nozzle Elevation Structure	80
		6.2.1 First Optimization Iteration	80
		6.2.2 Second Optimization Iteration	82
		6.2.3 Third Optimization Iteration	84
		6.2.4 Optimization Result	85
	6.3	Optimization on Body Structure	86
		6.3.1 Optimization Iteration	86
		6.3.2 Optimization Result	88
	6.4	Optimization on Machine's Cover	89
		6.4.1 Reference Thickness	89
		6.4.2 Optimization Result	90
	6.5	Result	91
CHAPTER 7	CON	CLUSION AND RECOMMENDATION	92
	7.1	Conclusion	92
	7.2	Recommendation	93
	REF	ERENCES	94
	BIBI	LIOGRAPHY	96
	APP	ENDIX A	97
	APP	ENDIX B	100
	APP	ENDIX C	102
	APP	ENDIX D	104
	APPI	ENDIX E	124

LIST OF TABLES

NO.	TITLE	PAGE
2.1	Technical Specification of LUF60 (Source: http://www.luf60.com/products/, (2008))	8
2.2	Technical Specification of Firemote (Source: Firemote Brochure, (2008))	10
2.3	Technical Specification of JELKA-4 (Source: System Specification of Jelka-4, (2009))	14
2.4	Technical Specification of FFR-1 (Source: http://mgsemi.com/hewsales/ffr-1.html, (2005))	16
2.5	Technical Specification of FIREROB (Source: http://www.americancrane.com/Telerob/ Firerob.htm, (2009))	18
2.6	Highlight of Fire Fighting Machines	19
2.7	CAE Software According to Company (Source: http://en.wikipedia.org/wiki/ List_of_CAx_companies, (2009))	23
2.8	Comparison of CATIA and SolidWorks	27
2.9	Factor of Safety Base on Yield Strength	32

C Universiti Teknikal Malaysia Melaka

NO.	TITLE	PAGE
4.1	Summary of Analysis Result	57
5.1	Materials Properties of AISI 1020 Steel and AISI 1045 Steel Cold Drawn	61
5.2	Connector and Contact Set Quantity	63
5.3	Tensile Stress Distribution at Pin Joints	71
6.1	Nozzle Elevation Structure's Optimization Summary	85
6.2	Body Structure's Optimization Summary	88
6.2	Machine's Covers Optimization Summary	90
6.3	Machine's Design Optimization Result	91

LIST OF FIGURES

NO.	TITLE	PAGE
2.1	LUF60 Mobile Fire Fighting Supporting Unit (Source: http://www.luf60.com/products/, (2008))	7
2.2	Firemote Remotely Controlled Fire Fighting Machine (Source: http://www.securobot.co.uk/ryland_research_ firemote.htm, (2008))	9
2.3	ARMTEC'S SACI Fire Fighting Robot (Source: http://www.teamdroid.com/archives/2006/08/ 08/friefighting-robots/, (2006))	11
2.4	Segway Robotic Fire Fighting Robot (Source: http://www.robotliving.com/2009/04/18/ segways-firefighting-robot/, (2009))	12
2.5	JELKA-4 Fire Fighting Remote Controlled System (Source: http://www.firerob.info/, (2009))	13
2.6	FFR-1 Fire Fighting and Rescue Wireless Robot (Source: http://www.bowen39.com/smallcap/ applications.htm)	15
2.7	Service Robot FIREROB (Source: http://www.americancrane.com/Telerob/ Firerob.htm, (2009))	17

NO.	TITLE	PAGE
2.8	Stress Simulation of CAE Software (Source: http://www.iowaengineer.com/projects/ test_analysis/fea.html, (2004))	21
3.1	Methodology Flow Chart	34
3.2	Formulation Process	35
3.3	Nozzle Cross Section	36
3.4	Division of Force at Nozzle	39
3.5	Moments Act on the Fire Fighting Machine	40
4.1	Fire Fighting Hose and Nozzle Cross Section	43
4.2	Nozzle Cross Section	46
4.3	Division of Force at Nozzle	49
4.4	Case 1 Moment and Distance	50
4.5	Case 2 Moment and Distance	51
5.1	CAD Drawing of Component	58
5.2	Meshing Evaluation on Component	59
5.3	Mate Assembly	60
5.4	Select Material Properties for Component	61

NO.	TITLE	PAGE
5.5	Defining Fix Geometry	62
5.6	Defining Pin Connector	63
5.7	Defining Force Condition	64
5.8	Meshing	65
5.9	Run Analysis with Sparse Solver	66
5.10	Stress Plot Result	67
5.11	Displacement Plot Result	68
5.12	Strain Plot Result	69
5.13	Factor of Safety Plot Result	70
5.14	Pin Joint Tensile Stress	71
5.15	C-Shaped Bar	72
5.16	Rectangular Strut Bar and Cylindrical Bar	73
5.17	Direct Bending Stress of Support Bar	74
5.18	Force Component of Machine	75
5.19	Back Main Support Bar	76
5.20	Diagram Representation of Support Bar	76

NO.	TITLE	PAGE
5.21	Shear and Bending Moment Plot of Support Bar	77
6.1	First Iteration Strut Bar Wall Thickness Reduction	80
6.2	Factor of Safety Plot for First Modification	81
6.3	Second Iteration Strut Bar Wall Thickness Reduction	82
6.4	First Iteration Cylindrical Bar Wall Thickness Reduction	82
6.5	Factor of Safety Plot for Second Modification	83
6.6	Factor of Safety Plot for Third Modification	84
6.7	C-Shaped on Body Structure	86
6.8	Original Dimension of C-Shaped Bar Buckling Analysis	87
6.9	Fourth Iteration of C-Shaped Bar Buckling Analysis	87
6.10	Cover Parts of Fire Fighting Machine	89

LIST OF SYMBOLS

ρ	=	Fluid density, kg/m ³
$h_{_f}$	=	Friction losses
Р	=	Pressure, N/m ²
V	=	Velocity, m/s
Q	=	Volume flow rate, m ³ s
D	=	Diameter, m
Α	=	Area, m ²
F	=	Force, N
М	=	Moment of force, Nm
θ	=	Angle, °
d	=	Displacement, m

LIST OF ABBREVIATIONS

- CAD = Computer-Aided Design
- CAE = Computer-Aided Engineering
- CAM = Computer-Aided Manufacturing
- CFD = Computational Fluid Dynamics
- FEA = Finite Element Analysis
- MES = Mechanical Event Simulation

LIST OF APPENDIXES

NO.	TITLE	PAGE
А	Pressure Loss through Hose Chart	97
В	Fire Fighting Machine Structure Assembly Drawing	100
С	Fire Fighting Machine Structure Exploded Drawing	102
D	Fire Fighting Machine Component Drawing	104
E	Optimized Component Drawing	124

CHAPTER 1

INTRODUCTION

1.1 Background

Fire fighting is the act of extinguishing destructive fires. A firefighter fights these fires to prevent destruction of life, property and the environment. Fire fighting is a highly technical profession which requires years of training and education in order to become proficient. A fire can be extinguished or put out by taking away any of the four components of the "Fire Tetrahedron" which are reducing agent (fuel), heat, self-sustained chemical reaction and oxidizing agent (oxygen). In usual case firefighter perform high pressure water jet to extinguish a fire.

One of the advance technologies in fire fighting field is fire fighting machine. Fire fighting machine can be defined as an apparatus that help or replace firefighter in performing water jet fire extinguishing. The machine can be control either wired control or remote control from a designed distance. The main purpose of the machine is to reduce the rate of direct contact between fire fighting and high temperature. The machine allows the activities of fire extinguishing at narrow scene. Besides, it enhanced the efficiency of fire fighting.

Fire fighting machine's design has to be optimized to increase its working efficiency. Computer-Aided Engineering (CAE) is the most suitable technology to perform optimization. CAE is the use of information technology to support engineers in tasks such as analysis, simulation, design, manufacture, planning, diagnosis, and repair. Software tools that have been developed to support these activities are

considered CAE tools. CAE tools are being used to analyze the robustness and performance of components and assemblies. The term encompasses simulation, validation, and optimization of products and manufacturing tools. CAE areas covered include, stress analysis using Finite Element Analysis (FEA), thermal and fluid flow analysis Computational Fluid Dynamics (CFD), kinematics, Mechanical Event Simulation (MES), analysis tools for process simulation and optimization of the product or process.

To perform optimization on the fire fighting machine, FEA approach is required. FEA is a numerical technique to solve engineering analysis problems for structural and field applications. The FEA represent a complicated structure into smaller elements and each element is based on the physical law using numerical computing techniques and all elements are assembled into a big matrix of algebraic equations. This matrix is solved by computer. Finally, the solution is obtained according to the engineer's requirements. Furthermore, modifying an existing product's or structure's design is utilized to qualify the product or structure for a new service condition. In case of structural failure, FEA will help determine the design modifications to meet the new condition.

1.2 Problem Statement

The problems of the fire fighting machine are power consumption, speed and acceleration. These problems are partly due to overweight of the machine's design. The period of operation of machine will be longer if the weight is reduced to minimum. Besides, the speed of the machine will increase with lower machine weight.

In the same time, the weight of the machine has to be balanced with the others possible external force on the machine to maintain stability during steady state and operation. The nozzle of the machine will release the maximum pressure of 12 bar water. Hence, force from the nozzle is the most significant force that needed to be taken into consideration. The current design of the fire fighting machine is not optimized. It efficiency is not in the maximum rate.

The overweight problem can be overcome by optimizing the design of the fire fighting machine using CAE software. By using CAE software, the current design can be analyzed and the minimum weight of the machine can be determined. In the optimization, factors such as strength of the nozzle elevation structure, chassis and chassis cover have to be taken in consideration. Analysis of strength of the nozzle elevation structure will be done using FEA software. The result of analysis will be the reference in optimization.