

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MODIFICATION OF HEADLIGHT INTENSITY CONTROL BASED ON DISTANCE BY USING BLUETOOTH

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Telecommunication) with Honours.

by

TEO HUEI BOON B071410260 940705-01-6062

FACULTY OF ENGINEERING TECHNOLOGY 2017

🔘 Universiti Teknikal Malaysia Melaka

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: MODIFICATION OF HEADLIGHT INTENSITY CONTROL BASED ON DISTANCE **BY USING BLUETOOTH**

SESI PENGAJIAN: 2017/18 Semester 2

Saya TEO HUEI BOON

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

	SULIT TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
Alamat Teta		Disahkan oleh:
TAMAN SU 86000 KLU	RIA, ANG, JOHOR.	
Tarikh:		Tarikh:
•	gan menyatakan s	u TERHAD, sila lampirkan surat daripada pihak berkuasa/organisas ekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebaga

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "MODIFICATION OF HEADLIGHT INTENSITY CONTROL BASED ON DISTANCE BY USING BLUETOOTH"

is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunications) with Honours. The member of the supervisory is as follow:

.....

(Project Supervisor)

ABSTRAK

Lampu depan adalah penting untuk setiap kereta terutamanya pada waktu malam untuk mencahayakan sekeliling jalan raya semasa memandu. Pemandu menggunakan lampu tinggi untuk pencahayaan yang lebih jelas apabila keadaan jalan raya terlalu gelap. Sesetengah pemandu membukakannya secara tidak sengaja atau mereka terlupa untuk menukarnya kembali ke lampu rendah selepas digunakan telah menyebabkan tidak selesa kepada pengguna jalan raya yang bergerak dari arah yang bertentangan. Dalam projek ini, sistem kawalan kecerahan lampu kereta dengan menggunakan modul Bluetooth. Lampu depan akan beralih dari lampu tinggi ke lampu rendah apabila modul Bluetooth merangkaikan sambungan dengan bluetooth modul lain. Arduino UNO, modul Bluetooth, dan lampu LED telah digunakan terutamanya dalam mereka bentuk sistem ini. Perisian Arduino 1.8.3 digunakan untuk pengaturcaraan Arduino UNO. Prestasi modul Bluetooth berdasarkan kelajuan akan diuji dan dianalisiskan dalam hasil analisis.

ABSTRACT

Headlight is vital for every car especially night to illuminate the road surrounding when driving. Drivers use high beam light for a clearer illumination while the road condition is too dazzling. Some will accidently switch it on or forget to switch it back to low beam light after used which causes uncomfortable to the road users who are travelling from the opposite direction. In this project a system of car headlight intensity control by using Bluetooth is designed. The headlight will switch from high beam light to low beam light once Bluetooth detects a connection from another Bluetooth. Arduino UNO, Bluetooth module, and LEDs are mainly used in designing this system. Arduino 1.8.3 software is used for programming the Arduino UNO. The performance of the Bluetooth module based on the speed will be tested and illustrated in analysis result.

DEDICATIONS

To my beloved parents To my respected supervisor and all lecturers And not forgetting to all my friends For their Love, Sacrifice, Encouragement, and Best Wishes

ACKNOWLEDGEMENT

Firstly, I would like to express my deep sense of gratitude to my respected supervisor, Mr Win Adiyansyah Indra for the unfailing support, valuable help and guidance all along of bachelor degree project. I am thankful to him for the encouragement that he has given in completing this project. Secondly, I would like to express deepest appreciation to my entire family in encouraging and supporting me mentally and financially for the project. Furthermore, I would like to thank my dearest friends that gave advice and support in completing this project. Last but not least, I would also like to thank for the helps and cooperation of everyone who is involved in this project either directly or indirectly.

TABLE OF CONTENT

Abst	rak			i
Abst	ract			ii
Dedi	cation			111
Ackı	nowledge	ment		iv
Tabl	e of Cont	ent		v
List	of Tables			ix
List	of Figure	S		Х
CHA	APTER 1	: INTROD	UCTION	1
1.1	Backg	round		1
1.2	Proble	em Statemen	t	3
1.3	Object	tive		4
1.4	Scope			4
CHA	APTER 2	: LITERAT	ΓURE REVIEW	6
2.1	Introd	uction		6
2.2	Blueto	ooth		6
	2.2.1	History of	fBluetooth	6
	2.2.2	OSI netwo	ork Model	7
	2.2.3	Electroma	agnetic Frequency Spectrum	8
	2.2.4	Spread Sp	pectrum	11
		2.2.4.1	FHSS	11
		2.2.4.2	DSSS	12
	2.2.5	Radio Spe	ecification	13
		2.2.5.1	GFSK	13
		2.2.5.2	Basic Rate and EDR	13
		2.2.5.3	LE Data Rate	14
		2.2.5.4	TDD	15
		2.2.5.5	CDMA	15
		2.2.5.6	TDM	15

	2.2.6	Compariso	n between Short Range Frequencies	16
	2.2.7	WPAN		16
	2.2.8	Protocol S	tack	17
		2.2.8.1	Controller	18
		2.2.8.2	Physical Layer	19
		2.2.8.3	Link Controller	20
		2.2.8.4	Baseband Resource Manager	20
		2.2.8.5	Link Manager	22
		2.2.8.6	AMP MAC, AMP PAL	23
		2.2.8.7	Device Manager	23
		2.2.8.8	HCI	23
		2.2.8.9	L2CAP	23
		2.2.8.10	SMP	24
		2.2.8.11	STP and ATT	24
		2.2.8.12	GATT	24
		2.2.8.13	GAP	25
		2.2.8.14	AMP Manager	25
	2.2.9	Bluetooth	Profile	25
	2.2.10	Type of Bl	uetooth	26
	2.2.11	Specificati	on of Bluetooth	27
2.3	Car H	eadlamp		30
	2.3.1	History of C	Car Headlamp	30
	2.3.2	Component	of Car Headlamp	31
		2.3.2.1 Casi	ng	32
		2.3.2.2 Refl	ector	32
		2.3.2.3 Beze	el	33
		2.3.2.4 Lens	5	33
		2.3.2.5 Bulb	98	34
	2.3.3	Car Light S	ources	34
		2.3.3.1 Halo	ogen	34
		2.3.3.2 HID		35
		2.3.3.3 LED)	37
		2.3.3.4 Lase	r	39

2.4	Ardui	no	40
	2.4.1	History of Arduino	41
	2.4.2	Arduino UNO	41
2.5	Comp	parison between Similar Method	43
	2.5.1	LDR Based Intensity Control	43
	2.5.2	Fuzzy Logic Based Intensity Control	44
	2.5.3	WSN Based Intensity Control	45
	2.5.4	IR Transmitter-Receiver	46
	2.5.5	Camera Based Intensity Control	47
	2.5.6	PWM Based Intensity Control	47
CHA	APTER 3	3: METHODOLOGY	49
3.1	Introd	luction	49
3.2	Plann	ing	49
	3.2.1	Data Collection	49
	3.2.2	Flow Chart	50
3.3	Desig	n	51
	3.3.1	Block Diagram of System Operation	51
	3.3.2	Flow Chart of the Headlight Intensity Control System	52
3.4	Imple	mentation	53
	3.4.1	Project Implementation	53
	3.4.2	Hardware Implementation	53
		3.4.2.1 Bluetooth Module JDY-08	53
		3.4.2.2 Arduino UNO	54
		3.4.2.3 LEDs	54
		3.4.2.4 Power Source	54
		3.4.2.5 220 Ohm Resistor	55
		3.4.2.6 Jumper Wires	55
		3.4.2.7 Breadboard	56
		3.4.2.8 Car Prototype	56
	3.4.3	Software Implementation	57
		3.4.3.1 EasyEDA	57
		3.4.3.2 Arduino 1.8.3	57

	3.4.4	Circuit Design	58	
	3.4.5	Programming Coding	59	
		3.4.5.1 Coding for Entering AT Command of Bluetooth Module	59	
		3.4.5.2 Coding of the System	60	
	3.4.6	Circuit Prototype	61	
CHAI	PTER 4	: RESULT & DISCUSSION	62	
4.1	Introd	uction	62	
4.2	Result	t	62	
4.3	Overa	ll Project Operation	63	
4.4	Analysis Result			
4.5	Discu	ssion	71	
4.6	Limita	ation	72	
CHAI	PTER 5	CONCLUSION & FUTURE WORK	73	
5.1	Introd	uction	73	
5.2	Concl	usion	73	
5.3	Future	e Recommendation	74	

REFERENCES

75

LIST OF TABLES

1.1	Road accident data in Malaysia from 1997 to 2016	3
2.1	7 layers of OSI model	7
2.2	Electromagnetic frequency spectrum	8
2.3	Radio Frequency Spectrum Regulatory Authorities	10
2.4	FCC Specification of Bluetooth Low Energy	10
2.5	Properties of LE PHYs	14
2.6	Comparison between short range wireless technologies	16
2.7	Power Classes	19
2.8	Basic Bluetooth radio and baseband parameters	20
2.9	Bluetooth operational state	21
2.10	Type and Specification of Bluetooth	27
2.11	Comparison between Halogen and HID	36
2.12	Comparison of different type of bulbs	38
2.13	Specification of Arduino UNO	42
4.1	Range of Bluetooth module based on different transmit power	68
4.2	The performance of the system based on different transmit power and	
	different speed	69

LIST OF FIGURES

1.1	Low Beam	2
1.2	High Beam	2
2.1	The Logo of Bluetooth	6
2.2	Example of Frequency Hopping Spread Spectrum	12
2.3	Example of Direct Sequence Spread Spectrum	12
2.4	Basic rate packet format	14
2.5	EDR packet format	14
2.6	Bluetooth Core System	17
2.7	Bluetooth core system architecture	18
2.8	Bluetooth Operational State	22
2.9	Bluetooth Profile	26
2.10	An example of Old Headlamp	30
2.11	An example of New Headlamp	31
2.12	Headlamp basic components	31
2.13	Main components of Halogen bulb	35
2.14	Main components of HID	35
2.15	An indication of the colour temperature spectrum	37
2.16	Main component of Basic LED	38
2.17	Component of laser light in BMW i8	39
2.18	Laser light in BMW i8	39
2.19	The operation of a laser light	40
2.20	Comparison of laser light and the standard light	40
2.21	Arduino UNO	41
2.22	LDR based intensity control	43
2.23	Fuzzy logic based intensity control	44
2.24	Wireless Sensor Network based intensity control	45
2.25	Intensity control by using IR transmitter-receiver	46
2.26	Camera based intensity control	47
2.27	PWM output based on 8 bit timer	48

3.1	Flow chart of planning of the project	50
3.2	Block diagram of the system operation	51
3.3	Flow Chart of the operation of the system	52
3.4	Example of Bluetooth Module	53
3.5	Example of Arduino UNO	54
3.6	LEDs	54
3.7	Resistors	55
3.8	Male to male jumper wire	55
3.9	Male to female jumper wire	56
3.10	Breadboard	56
3.11	Car Prototype	56
3.12	Logo for software EasyEDA	57
3.13	Arduino 1.8.3	57
3.14	Schematic circuit design	58
3.15	AT command coding	59
3.16	Headlight intensity control system coding	60
3.17	Circuit Prototype	61
4.1	Project design	63
4.2	Both cars with circuit met each other	63
4.3	Condition when both circuit met each other	64
4.4	High state for built in LED at PIN 13	64
4.5	Both cars apart to each other	65
4.6	Both cars are moving apart each other	65
4.7	The condition while both circuits are placed apart	66
4.8	Condition when one of the system is power off	66
4.9	Condition when Bluetooth module is detected	67
4.10	Condition when no detection on Bluetooth module	67
4.11	Graph of connection range against transmit power	68
4.12	Graph of connection distance against speed based on different transmit	
	power	69

CHAPTER 1 INTRODUCTION

1.1 Background

Nowadays, technology is developing and becomes more advance to improve and comfort human lifestyle. Humans rely on technology. For instant, people use technology in communication, transportation, and entertainment. Wireless communication is one of the technology which using radio waves to transfer information without using any cable. This technology is usually used in telecommunication system for transmit and receive signals.

Bluetooth is one of the wireless technologies which can transfer information with a short range. Bluetooth is commonly used in the electronic devices such as computer, mobile device, and entertainment devices. It costs low and easy to find in the market. In this project, Bluetooth will be applied in a car to control the headlamp of the car.

Car is very common for people in this century. It can be said that there is at least one car in a family. The safety of a car is always concerned for the car buyer and the car manufacturer. Roughly one third of all traffic accidents happen after dark, even though there is considerably less traffic at night than during the day. Accidents during the hours of darkness also result in a particularly high proportion of fatalities (the risk of getting killed in an accident at night is almost twice as high as during the day) (Nutt & Kher 2012). It may cause by poor lighting condition while driving.

Car headlamp is designed and attached in front of the car to emit light during night time for giving illumination to the road users. A normal car should have two headlamps that attached in front of the car and the headlamp will contain high beam lamp and low beam lamp. Headlamps are typically controlled to alternately generate low beams and high beams. Low beams provide less illumination and are used at night to illuminate the forward path when other vehicles are present. High beams provide significantly more light and are use to illuminate the vehicle's forward path when other vehicles are not present (Asaduzzaman et al. 2013).

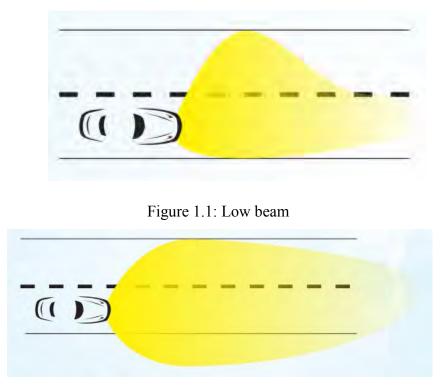


Figure 1.2: High Beam

However, some people may accidently switch on the high beam and they do not realise. It causes other road users that opposite to them cannot see clearly due blindness while driving. It may harm others eyes and causes accident. Therefore, an automatic switching high beam and low beam is needed to improve safety to the other road users and give a convenient to the drivers.

This project will design a method to control the brightness of the car headlamp. The high beam and low beam can be switched automatically when facing cars at night to reduce harmful of eyes and gain safety of road users.

1.2 Problem Statement

Accidents on road always happen. Many lives are lost due to the careless of road users. Not only day time, accident also happens at night although there is less traffic. One of the reasons that cause accident at night is the poor lighting condition. Drivers may not have a clear illumination. Hence, headlamp is designed to improve the visibility of the drivers. The illumination had improved for the drivers but it also reduces the visibility of the opposite road users.

Drivers usually use low beam headlamp to illuminate the surroundings on the road and use the high beam headlamp while the road surroundings is too dazzling. People may accidently switch on the headlamp from low beam to high beam while driving which will actually harm the eyes of road users that are driving in front of them. This is due to people will have some moment of blindness when the facing a strong light suddenly. It makes others can't see clearly through their sight.

Table below shows that the general road accident data in Malaysia from 1997 to 2016 (Anon n.d.).

Year	Registered Vehicles	Population	Road Crashes	Road Deaths	Serious Injury	Slight Injury	Index per 10,000 Vehicles	Index per 100,000 Population	Indeks per billion VKT
1997	8,550,469.00	21,665,600.00	215,632.00	6,302.00	14,105.00	36,167.00	7.37	29.10	33.57
1998	9,141,357.00	22,179,500.00	211,037.00	5,740.00	12,068.00	37,896.00	6.28	25.80	28.75
1999	9,929,951.00	22,711,900.00	223,166.00	5,794.00	10,366.00	36,777.00	5.83	25.50	26.79
2000	10,598,804.00	23,263,600.00	250,429.00	6,035.00	9,790.00	34,375.00	5.69	26.00	26.25
2001	11,302,545.00	23,795,300.00	265,175.00	5,849.00	8,680.00	35,944.00	5.17	25.10	23.93
2002	12,068,144.00	24,526,500.00	279,711.00	5,891.00	8,425.00	35,236.00	4.90	25.30	22.71
2003	12,819,248.00	25,048,300.00	298,653.00	6,286.00	9,040.00	37,415.00	4.90	25.10	22.77
2004	13,828,889.00	25,580,000.00	326,815.00	6,228.00	9,218.00	38,645.00	4.52	24.30	21.10
2005	15,026,660.00	26,130,000.00	328,264.00	6,200.00	9,395.00	31,417.00	4.18	23.70	19.58
2006	15,790,732.00	26,640,000.00	341,252.00	6,287.00	9,253.00	19,885.00	3.98	23.60	18.69
2007	16,813,943.00	27,170,000.00	363,319.00	6,282.00	9,273.00	18,444.00	3.74	23.10	17.60
2008	17,971,907.00	27,730,000.00	373,071.00	6,527.00	8,868.00	16,879.00	3.63	23.50	17.65
2009	19,016,782.00	28,310,000.00	397,330.00	6,745.00	8,849.00	15,823.00	3.55	23.80	17.27
2010	20,188,565.00	28,910,000.00	414,421.00	6,872.00	7,781.00	13,616.00	3.40	23.80	16.21
2011	21,401,269.00	29,000,000.00	449,040.00	6,877.00	6,328.00	12,365.00	3.21	23.70	14.68
2012	22,702,221.00	29,300,000.00	462,423.00	6,917.00	5,868.00	11,654.00	3.05	23.60	13.35
2013	23,819,256.00	29,947,600.00	477,204.00	6,915.00	4,597.00	8,388.00	2.90	23.10	12.19
2014	25,101,192.00	30,300,000.00	476,196.00	6,674.00	4,432.00	8,598.00	2.66	22.00	10.64
2015	26,301,952	31,190,000	489,606	6,706	4,120	7,432	2.55	21.5	9.6
2016	27,613,120	31,660,000 ^e	521466 ^ª	7152 ^ª	NA	NA	2.59	22.6	NA

Table 1.1: Road accident data in Malaysia from 1997 to 2016

- e = estimated value from Department of Statistics Malaysia
- a = media statement
- NA = Not available (The official figures are not available yet)
- vkt = vehicle kilometres traveled

1.3 Objectives

The objectives of this project based on the problem statement is

- 1. To study the concept of car headlight intensity control using Bluetooth
- 2. To design an automatic headlight intensity system by using Bluetooth
- 3. To improve the safety of road user

In this project, the objectives include of study the concept of car headlight intensity control using Bluetooth. In this part, the signal of transmitting and receiving will be demonstrated. The operation of Bluetooth in transmit and receive signal also will be shown. The second objective is to design an automatic headlight intensity system based on Bluetooth. The third purpose is to improve the safety of road user by using this product.

1.4 Scope

The project has divided into two parts. The first part of the project is to demonstrate the signal from transmitting and receiving it between both cars in a certain distance by using Bluetooth. The second part is to design an automatic lighting system after detect the signal from other cars. The project will be made in a prototype. This project will mainly use remote control cars, Bluetooth transmitter and receiver, Arduino UNO, and LEDs.

In this project, Bluetooth PAN (Personal Area Network) will be used. It can compose up to 8 devices (one-to-many network). It can be reached for about 100m

under ideal circumference. The range between Bluetooth and the time of the Bluetooth to react will be maximize and minimize.

This project will be made to be a plug and play hardware. So it can be installed in different type of car. This project is mainly concerned about installation of Bluetooth application in the car light. This project also concern about the reduction in accident rate.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

In this chapter, literature review will be covered. All of the research and information that related to this project will be studied and recorded in this chapter. The project title is Modification of Car Headlight Intensity Based On Distance by Using Bluetooth. So in this chapter, all information and researches about history, operation, and development of Bluetooth technology and car headlamp will be listed out.

2.2 Bluetooth

Figure 2.1: The Logo of Bluetooth

Bluetooth is a wireless technology with short range radio frequency which is designed for communication between devices without using any cable or wire.

2.2.1 History of Bluetooth

Bluetooth standard's development was conceived and introduced in 1994 by Ericsson Mobile Communications (Eeson 2001). The name of Bluetooth is came from Harald Blaotland who born in AD 908. This technology was developed by 5 companies which included Ericsson, Toshiba, IBM, Nokia and Intel (Verma et al. 2015). This five companies form a group which named the Bluetooth Special Industry Group (SIG) to build up the Bluetooth with 2.4GHz ISM (Industrial, Science, Medical) band. The Bluetooth specification was built up and introduced in 1994. The developers were Jaap Haartsen and Sven Mattisson in Sweden. Bluetooth is specified depends on frequency-hopping spread spectrum technology (Anon n.d.). The name of Bluetooth is officially adopted in 20 May, 1998. The Bluetooth 1.0 specification was released in 1999 (Anon n.d.).

2.2.2 OSI Network Model

Open Systems Interconnect (OSI) model is used to give a parameter for the development of principles for interconnecting computing devices. It separates between device to device connections into seven layers.

Table below shows the description and the standard and protocols used in each layer.

Layer	Description	Standards and
		Protocols
7–Application Layer	To identify the condition of service to	HTTP, FTP,
	applications	SNMP, POP3,
		SMTP
6–Presentation	To manage the translation of incoming	SSL
Layer	and outgoing data	
5 – Session Layer	To manage the communication between	ASAP, SMB
	the presentation layers of the sending and	
	receiving computers.	
4 – Transport Layer	To guarantee reliability of data transfers,	TCP, UDP
	error healing and manage data flow. All	
	the data packets should have arrived	
3 – Network Layer	To describe the management of network	IPv4, IPv6, ARP